Пирометры для измерения температуры бесконтактным методом. Пирометры для измерения температуры — что это такое и где его используют? Бесконтактное измерение температуры

Сфера использования приборов для бесконтактного измерения температуры, так называемых пирометров, очень велика, они применяются на железнодорожном транспорте, в металлургии, энергетике, жилищно-коммунальном хозяйстве, медицине, строительстве, научных исследованиях, энергосбережении. Но нам особенно интересна именно строительная индустрия, где уже давно заметна тенденция к энергосбережению, сокращению теплопотерь зданий и сооружений.

Пирометры помогают решать эту задачу - ими удобно искать «мостики холода», участки с плохой теплоизоляцией, щели на стыках оконных и дверных блоков, диагностировать системы отопления и вентиляции бесконтактным методом. Конечно, есть и куда более удобные приборы - тепловизоры, но «частнику» они явно не по карману. А вот пирометр стоит недорого, и пусть работает он не столь наглядно, однако со своими задачами справляется.

Принцип действия любого пирометра основан на измерении мощности теплового излучения объекта измерения с любой непрозрачной поверхности, преимущественно в диапазонах инфракрасного излучения и видимого света. У IR-T1 высокий показатель визирования (10:1, на практике это означает, что на расстоянии 10 м он измеряет температуру в области диаметром 1 м) и широкий диапазон измеряемых температур, включающий и область отрицательных значений. При таких показателях его цена выглядит весьма умеренной.

Инфракрасный пирометр FLIR TG165 (бесконтактный термометр)

Разница между пирометрами и тепловизорами проста. Первые способны получить только одно значение температуры за одно измерение, а вторые сразу выдают инфракрасный снимок объекта со множеством замеренных значений. Но дело в том, что для замера температуры каждой точки нужен отдельный датчик. Сколько точек замеряется - столько датчиков и должно быть (некоторые электронные «ухищрения», которыми иногда оснащают тепловизоры, принципиально проблему не решают).

И как раз от количества датчиков, собранных в компактную матрицу, больше всего зависит цена любого тепловизора. Даже самые дешёвые их модели обходятся в десятки тысяч рублей, а профессиональные вполне могут стоить и несколько сотен тысяч. Тепловизор, даже самый простой, оснащается полноценным ЖК-экраном, может сохранять данные в памяти и подключаться к компьютеру для передачи и анализа изображений.

Все электроприборы работают за счет прохождения через них электрического тока, который дополнительно нагревает проводники и оборудование. При этом в нормальном режиме эксплуатации создается баланс между повышением температуры и отводом ее части в окружающую среду.

При нарушениях качества контактов ухудшаются условия прохождения тока и повышается температура, которая может стать причиной неисправности. Поэтому в сложных электротехнических устройствах, особенно на высоковольтном оборудовании предприятий энергетики, осуществляется периодический контроль нагрева токоведущих частей.

Для устройств, находящихся под высоким напряжением, измерения осуществляются бесконтактным методом на безопасном расстоянии.

Принципы дистанционного измерения температуры

У любого физического тела происходит движение атомов и молекул, которое сопровождается . Температура объекта влияет на интенсивность этих процессов и о ее величине можно судить по значению теплового потока.

Бесконтактное измерение температуры основано на этом принципе.

Источник обследования с температурой «Т» излучает в окружающее пространство тепловой поток «Ф», который воспринимается тепловым датчиком, удаленным от источника тепла. После него преобразованный внутренней схемой сигнал выдается на информационное табло «И».

Приборы измерения температуры, осуществляющие ее замер по инфракрасному излучению, называют инфракрасными термометрами либо сокращенным названием «пирометры».

Для их точной работы важно правильно определить диапазон измерения на шкале электромагнитных волн, который составляет область примерно 0,5?20 мкм.

Факторы, влияющие на качество измерения

Погрешность пирометров зависит от комплекса факторов:

  1. поверхность наблюдаемой площади объекта должна быть в зоне прямого обзора;
  2. пыль, туман, пар и другие предметы между тепловым датчиком и источником тепла ослабляют сигнал, как и следы загрязнения на оптике;
  3. структура и состояние поверхности исследуемого тела влияют на интенсивность инфракрасного потока и показания измерителя температуры.

Влияние третьего фактора объясняет график изменения коэффициента излучения? от длины волны.

Он демонстрирует характеристики излучателей черного, серого и цветного оттенков.

Способность инфракрасного излучения Фs черного материала берется за основу сравнения других изделий и принимается равным 1. Коэффициенты всех остальных реальных веществ ФR становятся меньше 1.

На практике пирометры пересчитывают излучение реальных объектов на показатели идеального излучателя.

Также на измерение оказывают влияние:

    длина волны инфракрасного спектра, на которой проводится замер;

    температура исследуемого вещества.

Как устроен бесконтактный измеритель температуры

По способу вывода информации и ее обработки приборы удаленного контроля нагрева поверхностей подразделяют на:

    пирометры;

    тепловизоры.

Устройство пирометров

Условно состав этих приборов поблочно можно представить:

    инфракрасным датчиком с оптической системой и зеркальным световодом;

    электронной схемой, преобразующей полученный сигнал;

    дисплеем, на котором отображается температура;

    кнопкой включения.

Поток теплового излучения фокусируется оптической системой и зеркалами направляется на датчик первичного преобразования тепловой энергии в электрический сигнал с величиной напряжения, прямо пропорциональной инфракрасному излучению.

Вторичное преобразование электрического сигнала происходит в электронном устройстве, после которого измерительно-счетный модуль осуществляет вывод информации на дисплей, как правило, в .

На первый взгляд кажется, что пользователю для замера температуры удаленного объекта достаточно:

    включить прибор нажатием на кнопку;

    навести на исследуемый объект;

    снять показания.

Однако, для точного измерения необходимо не только учесть факторы, влияющие на показания, но и правильно выбрать расстояние до объекта, которое определяется оптическим разрешением прибора.

Пирометры обладают различными углами обзора, характеристикой которых для удобства пользователей выбраны соотношения между расстоянием до объекта измерения и площадью охвата контролируемой поверхностью. В качестве примера на картинке приведено соотношение 10:1.

Поскольку эти характеристики прямо пропорциональны между собой, то для точного измерения температуры необходимо не только правильно навести прибор на объект, но и подобрать расстояние для выбора площади измеряемой зоны.

Тогда оптическая система будет обрабатывать тепловой поток от нужной поверхности без учета влияния излучения окружающих предметов.

С этой целью усовершенствованные модели пирометров оснащаются лазерными целеуказателями, которые помогают навести термодатчик на объект и облегчить определение площади контролируемой поверхности. Они могут иметь разные принципы работы и обладать неодинаковой точностью наведения.

Одиночный лазерный луч лишь приблизительно указывает место центра контролируемой зоны и позволяет определить ее границы неточно. Его ось смещена относительно центра оптической системы пирометра. За счет этого вводится погрешность параллакса.

Коаксиальный способ лишен этого недостатка - луч лазера совпадает с оптической осью прибора и точно указывает центр измеряемой площади, но не определяет ее границы.

Указание размеров контролируемого участка предусмотрено в целеуказателе с двойным лазерным лучом . Но при маленьких расстояниях до объекта допускается ошибка, вызванная первоначальным сужением области чувствительности. Этот недостаток сильно проявляется на объективах с короткофокусным расстоянием.

Целеуказатели с кросс-лазером улучшают точность работы пирометров, оснащенных объективами с коротким фокусом.

Одиночный круговой лазерный луч позволяет определить зону контроля, но он тоже обладает параллаксом и завышает показания прибора на коротких дистанциях.

Круговой точный лазерный целеуказатель работает наиболее надежно и лишен всех недостатков предшествующих конструкций.

Пирометры отображают информацию о температуре методом текстово-цифрового вывода на дисплей, которая может дополняться другими сведениями.

Устройство тепловизоров

Конструкция этих измерительных приборов температуры напоминает устройство пирометров. У них в качестве приемного элемента потока инфракрасного излучения работает гибридная микросхема.

Она своим фоточувствительным эпитаксиальным слоем через сильнолегированную подложку воспринимает ИК поток.

Устройство приемника тепловизора с гибридной микросхемой показано на картинке.

Тепловая чувствительность тепловизоров на основе матричных детекторов позволяет измерять температуру с точностью до 0,1 градуса. Но, такие высокоточные устройства используются в термографах сложных лабораторных стационарных установок.

Все приемы работы с тепловизором выполняются так же, как и с пирометром, но на его экране выводится картинка электротехнического оборудования, представленная уже в переработанном цветовом диапазоне с учетом состояния нагрева всех деталей.

Рядом с термическим изображением размещается шкала перевода цветов в линейку температур.

При сравнении работы пирометра и тепловизора можно увидеть разницу:

    пирометр определяет среднюю температуру в контролируемой им области;

    тепловизор позволяет оценить нагрев всех составных элементов, расположенных в наблюдаемой им зоне.

Особенности конструкций бесконтактных измерителей температуры

Описанные выше устройства представлены мобильными моделями, позволяющими выполнять последовательные замеры температуры на многих местах работы электрического оборудования:

    вводах силовых и измерительных трансформаторов и выключателей;

    контактах разъединителей, работающих под нагрузкой;

    сборках систем шин и секций высоковольтных распределительных устройств;

    в точках соединения проводов воздушных линий электропередач и других местах коммутации силовых цепей.

Однако, в отдельных случаях выполнения технологических операций на электрооборудовании сложные конструкции бесконтактных измерителей температуры не нужны и вполне можно обойтись простыми моделями, установленными стационарно.

В качестве примера можно привести метод измерения сопротивления обмотки ротора генератора при работе с выпрямительной схемой возбуждения. Поскольку в ней наводятся большие переменные составляющие напряжения, то контроль ее нагрева осуществляется постоянно.

Дистанционный замер и отображение температуры у обмотки возбуждения происходит на вращающемся роторе. Термодатчик стационарно располагается в наиболее благоприятной зоне контроля и воспринимает направленные на него тепловые лучи. Сигнал, обработанный внутренней схемой, выводится на устройство отображения информации, которое может быть оборудовано стрелочным указателем и шкалой.

Схемы, работающие по этому принципу, отличаются относительной простотой и надежностью.

В зависимости от назначения пирометры и тепловизоры подразделяют на устройства:

    высокотемпературные, предназначенные для измерения сильно нагретых объектов;

    низкотемпературные, способные контролировать даже охлаждение деталей при морозе.

Конструкции современных пирометров и тепловизоров могут оборудоваться системами связи и передачи информации через с удаленными компьютерами.

Современные пирометры для измерения температуры бесконтактным методом применяются для изменения показателя температуры удалённым способом. Модели устройства используют технологию инфракрасного излучения, что позволяет им более точно определять идентифицируемую величину. Принцип функционирования девайса достаточно простой и после включения он принимает данные об уникальном показателе волн энергии, используя спектр инфракрасного типа. Примечательным достоинством пирометра является относительно малая цена подобного способа измерения. Модель направляется на изучаемую плоскость на любом расстоянии - его работа ограничена спецификацией окружающей среды и размером станка, печи или любого другого устройства.

Девайс функционирует по принципу идентификатора инфракрасного излучения. Эффективность работы зависит от показателя температуры поверхности - пирометр определяет характеристики излучения объекта и с большой точностью выдаёт необходимые цифры.

Где может применяться пирометр для измерения температуры бесконтактным способом?


Вряд ли данный девайс понадобиться в обычной ситуации, где нужно узнать показатель температуры. Однако пирометр часто эксплуатируется в следующих ситуациях:

  • Когда необходимо идентифицировать температуру труднодоступной области или объекта, который расположен на большом расстоянии - устройство позволит определить нужные данные на большом расстоянии (высокая точность информации гарантирована);
  • В сфере определения температуры движущегося тела - другие устройства не настолько эффективны, как пирометр;
  • Определение состояние компонентов, которые находятся под воздействием электрического тока - рассматриваемое устройство часто применяется на многочисленных предприятиях;
  • Жёсткий контроль над показателем температуры конкретного компонента агрегата - поддерживать определённый показатель крайне важно и пирометр значительно упрощает производственный процесс;
  • Измерение температуры «сложного» объекта небольшого размера - девайс отлично подходит для идентификации состояния тонкого поверхностного слоя устройства;
  • Измерения частей, которые нельзя трогать руками или предметами;
  • Исследование состояния объектов, которые характеризуются низкой теплопроводностью или теплоёмкостью;
  • Скоростное измерение.

В какой сфере деятельности человека применяется пирометр?

Чаще всего данный девайс применяется на предприятиях, которые используют теплоэнергетическое оборудование, а именно всевозможные нагревательные элементы, бойлеры, тепловые трассы или паропроводы. Также пирометр можно часто встретить в энергетической сфере, где его применяют для измерения состояния компонентов трансформаторной будки, проводов, контактов и кабелей под напряжением. В металлургии девайс применяют для печей, станков и прессов, а в области электроники его можно использовать для идентификации показателя уровня нагрева различных компонентов и деталей.

Применение пирометра в работе

Пирометр превосходно подходит для осуществления диагностики ДВС, а также для определения температуры электрического двигателя и компонентов транспортного средства. Также устройство улучшает контроль производственного дела и «следит» за условиями хранения продуктов питания. С помощью пирометра можно обследовать здания и сооружения, а также проверять состояние качества отопления, вентиляции и кондиционирования. Он отлично помогает при контроле холодильной техники и способствует повышению качества оснащения пожарной бригады.

Какие бывают пирометры, и каким образом они работают?

Сначала данное устройство применялось для идентификации температуры неконтактным методом сильно горячих агрегатов - девайс позволял визуально оценить состояние объекта. На данный момент появилось несколько разновидностей пирометра:

  • Оптический. Он помогает видеть температуру горячего тела методом осмотра, без применения дополнительных агрегатов, посредством сравнения цветовой гаммы различных объектов.
  • Цветовой или мульти спектральный. Принцип функционирования этого девайса заключается в поиске параметра температуры посредством сравнения тепловых волн в сравниваемых спектрах.
  • Радиационный. Для идентификации температуры применяется вычисленные данные мощности количество выделяемого тепла рассматриваемого агрегата.

Любое тело, которое обладает показателем температуры выше нуля «выделяет» тепло. Пирометрия различного типа способствуют более точному определению состояния объекта. Наиболее широко используются инфракрасные параметры или радиомеры, которые обладают большей чувствительностью, однако определяют показатель температуры менее точно. Технические возможности идентифицируются следующими параметрами:

  • Разрешение оптического типа;
  • Диапазон показателя температуры;
  • Показатель вычисляемого разрешения;
  • Скорость функционирования;
  • Точность проводимого измерения;
  • Мощностью излучения и методом нацеливания на объект.

Для того чтобы идентифицировать тепловое состояние объекта, нужно просто навести аппарат на определённую область объекта (будет задействован термометр). Система пирометра фокусируется и «ловит» равный тепловой луч, определяя температурный режим. Девайс получает электрический сигнал, и он позволяет определить данные температуры - сигнал «рассматривается» во вторичном термическом конвертере и обрабатывается системой.

Профессионалы напоминают, что пирометр может идентифицировать показатель температуры с определённой погрешностью, которые возникают из-за того, что он не соответствует прозрачности окружающей среды или диаметра пятна, на которое направляется пирометр.

Пирометры и наша жизнь

Изготовление измерительных приборов обладает достаточными техническими характеристиками, которые позволяют весьма точно определить температуру поверхности выбранного объекта. Измерители могут быть как стационарными, так и переносными. Последний вариант устройств применяются в условиях промышленного производства и используются для облегчения тяжёлых условий труда и предупреждения травм. Данный вид агрегата характеризуется высоким показателем оптического разрешения, что позволяет ему использоваться для более эффективного наблюдения за уровнем температуры или слежения за технологическим циклом работы определённого устройства.

Что касается стационарного варианта, то его можно найти на крупных предприятиях. Они эксплуатируются в тех областях, где необходима организация постоянного наблюдения за функционированием определённого устройства. Чаще всего их ставят в тех местах, где невозможно применять датчик контактного типа или требуется повысить безопасность выполнения определённых задач.

Пирометры бесконтактного типа необходимы там, где невозможно измерять другими методиками измерения температуры. Получается, что данный вид устройства весьма полезен для современного производства. Этот тип девайса могут применять для контроля температуры грузового узла вагона поезда или для слежения за уровнем нагрева печи в цеху. Широкая область применения пирометрического устройства связана с его популярностью в различных отраслях промышленности - это средство способно обеспечить владельца точными данными, и позволяет лучше организовать рабочий процесс.

Пирометры - это компактные приборы, позволяющие мгновенно измерять температуру в диапазоне -50°С - +3000°С на расстояниях от 1 до 30м. Достаточно просто направить пирометр на объект измерения и нажать на кнопку.

Размеры области определения температуры пирометром зависят от оптического разрешения (показателя визирования) прибора. Показателем визирования называется отношение диаметра пятна контроля прибора на объекте измерения к расстоянию до объекта и обозначается D:S.

Чем выше показатель визирования тем дороже пирометр. Выбор оптического разрешения полностью зависит от реального размера объекта и расстояния, на котором возможны данные измерения. Для большинства применений вполне достаточно пирометров с оптическим разрешение 10:1 - 40:1. Но там, где надо контролировать температуру сильно нагретых объектов или небольших по размерам предметов на большом расстоянии, требуются модели с более высоким показателем визирования 50:1 - 180:1.

пирометры излучения применяются для измерения температуры в диапазоне от +100 до 2500 градусов Цельсия. Пирометры излучения работают по принципу измерения излучаемой нагретыми телами энергии, изменяющейся в зависимости от температуры этих тел.

Измерение температуры поверхности является важным этапом при организации теплосбережения объектов, проведения ремонтных работ электронных устройств, строительных работ, различного вида контроля. Часто такого вида измерения провести термометром контактного типа не представляется возможным из-за скорости процесса, труднодоступности места измерения и т. п. Поэтому возникает потребность использовать прибор для измерения температуры бесконтактным методом. Такое устройство носит название пирометр.

Массовый выпуск пирометров начался в шестидесятых годах прошлого века. Первое переносное устройство было сконструировано и изготовлено на продажу в 1967 году, корпорацией Wahl США.

Название пирометр происходит от греческих слов жар и мерить. Это прибор, способный осуществлять измерения температуры тела бесконтактным способом. Принцип действия основан на анализе теплового излучения предмета.

При нагревании любое вещество имеет свойство излучать световые и тепловые лучи. Чем выше температура нагрева, тем сильнее излучение. Одним из видов излучения является инфракрасное. Так как яркость излучения связана с температурой, следовательно, определяя яркость, можно измерить и температуру.

Классификация устройств

Классифицируют устройства по следующим видам:

Технические параметры

  • Оптическое разрешение. Это показатель, характеризующийся отношением площади области захвата к расстоянию до вещества. Этот параметр зависит от вида прибора и может лежать в пределах от 2:1 до 600:1. Чем показатель выше, тем лучше. При использовании вне профессиональной сферы такое разрешение составляет около 15:1.
  • Диапазон работы. Зависит в первую очередь от характеристик датчиков, применённых в приборе. Его величина может лежать в границах от минус 35 до плюс 800 градусов.
  • Точность. Эта величина характеризует границы изменения температуры при замерах и зависит от правильности калибровки прибора. В среднем величина точности пирометров составляет 1.5%.
  • Коэффициент излучения. Это отношение мощностей абсолютно чёрного объекта к измеряемой поверхности, как правило, принимается около 0,95.

Вне зависимости от классификации, пирометры также могут снабжаться различными опциями. Например, возможностью подключения к персональному компьютеру, дополнительными источниками питания, запоминанию предыдущих измерений, часами, лазерным указателем, переключателем с Фаренгейта в Цельсия и т. п.

Подробные сведения об использовании имеющегося устройства можно получить из его паспорта и инструкции по применению. Укажем ниже общие рекомендации использования любого типа устройства .

Сама процедура измерения не должна вызывать затруднений. Требуется просто включить прибор, навести на измеряемый объект, нажать кнопку (курок) и прочитать на экране полученное значение.

Самостоятельное изготовление

Схемы на пирометры для измерения температуры бесконтактным методом сложны, монтаж плотный, калибровка требует наличия заводских приборов. В то время как стоимость готовых устройств в китайских интернет-магазинах приемлема для любого желающего.

Приобретая инфракрасный пирометр, следует удостовериться в том, что в наличии есть инструкция. Пирометр — это не простое устройство, поэтому самостоятельно разобраться с функциями будет проблематично. В инструкции описаны существенные пункты, необходимые для правильного использования. Приведём пример некоторых из них:

  • наличие выходов и тип программного обеспечения;
  • сведения о погрешностях;
  • коэффициент инерции;
  • возможности фокусировки;
  • температурный градиент;
  • величины рабочего спектра;
  • величина излучения.

Хотя, в принципе, его изготовление своими руками возможно. Понимая, как работает пирометр, можно собрать устройство яркостного типа. Для этого понадобится:

  1. фотометрическая лампочка;
  2. окулярная линза;
  3. светофильтр;
  4. аккумулятор;
  5. реостат;
  6. миллиамперметр;
  7. труба.

На одном конце трубы устанавливается линза, которая и будет служить объективом. В середине устанавливается лампочка, а на другом конце окуляр. Лампочка соединяется с питанием через реостат и миллиамперметр.

Измерения проводят следующим образом . Объектив зрительной трубы направляют на исследуемый объект и добиваются максимальной резкости изображения. После этого подают питание с аккумуляторной батареи и реостатом выставляют накал нити, соответствующий яркости нагретой поверхности. Далее, используя показатель миллиамперметра, вычисляют температуру. Но для этого предварительно нужно составить эталонную таблицу соответствия температуры показателям миллиамперметра.

Светофильтры служат для снижения яркости излучения при высоких температурных значениях, а также для поглощения красной части спектра. Точность измерения таким пирометром будет невысока, хотя обычно она составляет около ± 2%.

Подведя итоги, отметим, что для измерения температур в труднодоступных местах лучше применять пирометр бесконтактный, инфракрасный . Термометр такого типа характеризуется надёжностью, но позволяет измерить температуру только в отдельной точке. При измерении температур на больших участках следует применять тепловизор. Хорошо зарекомендовавшими себя производителями пирометров считаются: Testo, Optris и Raytek, на них и стоит обратить внимание.