Моделирование схем в программе Multisim. Примеры и задачи в среде Multisim Работа моторов в программе мультисим

Этой статьей начинаю освещать одну из интереснейших тем это тема компьютерного, еще говорят, схемотехнического моделирования схем различных электронных устройств .

Вообще термин моделирование электронных схем имеет много синонимов, это и эмуляция электронных схем, симуляция электронных схем и т. д. Я буду придерживаться термина «компьютерное моделирование» или моделирование схем на компьютере, не суть важно.

Итак, поехали.

На сегодняшний день существуем множество компьютерных программ, которые предназначены в первую очередь для разработки различных электронных устройств и в таких программах существует одна из важных функций – эмуляция электрических схем.

Перечислю только самые известные из них:

LTSpice и множестов других программ.

Сегодня я хочу вас познакомить с программой компании National Instruments – это эмулятор схем Multisim.

Бесплатную программу Multisim с ограничениями на 50 элементов в схеме можно скачать с сайта производителя по ссылке https://lumen.ni.com/nicif/confirmation.xhtml, там же на сайте можно найти версию для учебных заведений, более расширенную по сравнению с предидущей, но тоже имеющую свои ограничения https://lumen.ni.com/nicif/us/academicevalmultisim/content.xhtml

Начнем с изучения интерфейса программы.

Основные функциональные панели программы показаны на следующем рисунке.

Отдельный интерес представляет панель компонентов. С помощью панели компонентов осуществляется доступ к базе компонентов. При нажатии на любую из выбранных пиктограмм компонентов схем открывается окно Выбор компонента . В левой части окна осуществляется выбор необходимого компонента.

Вся база данных компонентов разделена на разделы (пассивные элементы, диоды, транзисторы, микросхемы и т. д.), а разделы на семейства (например, для диодов – это сами диоды, стабилитроны, светодиоды, тиристоры и т. д.). Надеюсь идея понятна.

Так же в окне выбора компонента можно посмотреть обозначение выбранного компонента, описание его функции, выбрать тип корпуса.

Моделирование схем в программе Multisim.

Теперь переходим непосредственно к практике. Давайте соберем простую схему в программе Multisim и заставим ее работать!

Я скачал из интернета схему мультивибратора на двух транзисторах, где в качестве нагрузки используются светодиоды.

Можем воспользоваться измерительными приборами, например виртуальным осциллографом и посмотреть сигналы в различных точках схемы.

Мы убедились, что схема работает, на этом знакомство с программой Multisim заканчиваю, если вас заинтересовала тема моделирования схем, пишите свои вопросы в комментариях, отвечу с удовольствием.

Ну и на последок, по традиции представляю вам подробное видео по моделированию схем в программе Multisim.

Если вы еще не подписались на новые выпуски интернет журнала «Электрон», то заполняйте форму внизу страницы и получайте новые выпуски на электронную почту в формате PDF.

ЦЕЛЬ РАБОТЫ

Изучение и получение навыков работы в программе Multisim

ЗАДАНИЕ НА ПРОВЕДЕНИЕ РАБОТЫ

Изучить принцип построения электронных схем в программе Multisim

ОБЩИЕ СВЕДЕНИЯ

Организация интерфейса программы Multisim представлена на рис. 1. Здесь показана стандартная инструментальная панель, содержащая кнопки для наиболее употребительных функций программы.

Панель симуляции позволяет осуществлять старт, остановку и другие функции симуляции, описанные ниже.

Панель инструментов имеет конпки для каждого из используемых инструментов, выбираемых из базы данных Multisim/

Общая панель разработки, показанная на рис.1. содержит окно схемы, в котором размещается исследуемая схема.

Стандартная панель содержит следующие кнопки:

На инструментальной панели расположены следующие кнопки:

И, наконец, на панели компонентов показаны следующие элементы:

Инструменты

В программе Multisim есть ряд виртуальных приборов. Эти приборы используются также как и их реальные эквиваленты. Использование виртуальных приборов - один из лучших и самых простых путей исследования схемы. Эти приборы могут быть помещены в любой уровень схемы или подсхемы, но они активны только в настоящее время для схемы или подсхемы на активных компонентах.

Виртуальные приборы имеют два вида: значок инструмента, который Вы устанавливаете на вашу схему, и, открытый прибор, где Вы устанавливаете способ управления прибором и отображения на экран.

Активный прибор
Идентификатор инструмента
Идентификатор инструмента
Значок инструмента
Индикаторы ввода-вывода

Значок прибора показывает, как прибор связан со схемой. Когда инструмент активен, черная точка внутри индикаторов ввода-вывода показывает, что прибор связан с точкой разветвления.

Добавление прибора к схеме:

1. По умолчанию инструментальная панель приборов отображена на рабочем пространстве. Если инструментальная панель не отображена, нажмите кнопку Instruments. Появится Инструментальная панель Instruments, на которой каждая кнопка соответствует одному инструменту.

2. На инструментальной панели Instruments нажмите кнопку прибора, который Вы хотите использовать.

3. Переместите курсор в то место схемы, где Вы хотите разместить прибор и нажмите на кнопку мыши.

Появятся также значок и идентификатор инструмента. Инструментальный идентификатор идентифицирует тип прибора и его образца. Например, первый прибор, который Вы размещаете на схеме – будет назван "XMM1", второй - "XMM2", и так далее.


Примечание: чтобы изменить цвет значка Instrument, щелкните на немправой кнопкой мыши и выберете Color из контекстного меню. Выберите желатемый цвет, и нажмите OK.

Использование прибор:

1. Чтобы просмотреть и изменить средства управления прибором, дважды щелкните на нем. Появится окно управления Инструментом. Внесите необходимые изменения в параметры настройки также, как Вы сделали бы это на их реальных эквивалентах.

Обратите внимание на то, что параметры настройки должны соответствовать вашей схеме. Если параметры настройки неправильны, это может исказить результаты имитации.

Примечание : Не все участки открытого прибора поддаются изменению. Знак в виде руки появляется, если курсор находится на настройке, которая может изменяться.

2. Чтобы "активировать" схему, нажмите кнопку Simulate на Панели управления, и выберите Run из появившегося всплывающего меню. Multisim начнет имитировать поведение схемы и значения измеряемых параметров в точках, к которым Вы подключили прибор.

В то время, как схема активизирована, Вы можете корректировать параметры настройки инструмента, но Вы не можете изменять схему, изменяя значения или выполняя какие-либо действия, такие как вращение или перемещение элемента.

Интуитивный редактор схем программы Multisim дает возможность за счет экономии времени на рисовании оставлять больше времени на конструирование. Multisim построен так, что нет необходимости переключаться от режима размещения деталей к режиму разводки, как в других аналогичных программах. Multisim поступает к заказчику с полной базой из 16000 деталей и включает в себя имитационную модель, схематический символ, электрические параметры и макет для разводки. Также имеется бесплатный доступ к центру конструирования (Design Center), в котором имеется более 12 миллионов деталей в поисковой базе данных.

Максимальной точностью и достоверностью обладают классические программы схемотехнического моделирования или SPICE-подобные программы (где SPICE с английского - Имитационная Программа со Встроенным Выражением Цепи), к числу которых и относится Multisim. Принцип их работы основан на машинном составлении системы обыкновенных дифференциальных уравнений электрической цепи и их решении без применения упрощающих предположений. Здесь используются численные методы Рунге - Кутта или метод Гира для интегрирования системы дифференциальных уравнений, метод Ньютона - Рафсона для линеаризации системы нелинейных алгебраических уравнений и метод Гаусса или LU-разложение для решения системы линейных алгебраических уравнений. Модификации этих методов направлены на улучшение сходимости или вычислительной эффективности без упрощения исходной задачи.

В Multisim используются следующие функции SPICE моделирования: SPICE-моделирование индустриального стандарта; XSPICE усиление для расширения Berkeley SPICE3 возможностей; моделирование с подключением VHDL и Verilog; интерактивное моделирование; широкий набор источников, включая DC, синусоидальный, импульсный, пилообразный, случайный, AM, FM; программное моделирование; смешанная аналого-цифровое моделирование; современные алгоритмы для разрешения проблем пересекающихся цепей, расширенные опции для получения компромисса скорость/точность. Функции радиочастотного моделирования: SPICE усиления для высокочастотной имитации; RF инструменты и анализы, RF модели и мастер создания собственных моделей.

Multisim - единственный общецелевой пакет моделирования для использования с частотами свыше 100 MHz, где SPICE обычно становится неработоспособным. Радиочастотный набор программы Multisim включает специальную библиотеку деталей, мастер создания радиочастотных моделей, радиочастотные виртуальные инструменты и радиочастотные анализаторы. VHDL и Verilog функции - простой способ работы для начинающих использовать HDLs, который представляет собой инструмент моделирования сложных цифровых деталей, которые не могут быть смоделированы в SPICE. VHDL и Verilog - возможность моделирования деталей без необходимости понимать HDL синтаксис. VHDL и Verilog - самостоятельный инструмент конструирования с редакторами кодов, менеджерами проектов моделирования, выводом формы колебаний и отладкой, совместным моделированием со SPICE, полным соответствие стандартам.

Multisim позволяет работать группе конструкторов над идентичными схемами в реальном времени через локальную сеть или Интернет. С помощью Multisim можно вводить специальные поля для характеристики деталей, такие как стоимость, время поставки или предпочтительный поставщик.

Совместное использование Multisim и технологии виртуальных приборов, позволяет инженерам-разработчикам печатных плат и преподавателям электротехнических специальностей достичь полной непрерывности цикла проектирования, состоящего из трех этапов: изучение теории, создание принципиальной схемы моделируемой системы, изготовление прототипа и проведение тестовых испытаний.

В Multisim 10.0 и Ultiboard 10.0 реализовано большое количество функции для профессионального проектирования, ориентированных на самые современные средства моделирования, улучшенную компонентную базу данных и расширение пользовательского сообщества. Компонентная база данных включает в себя более 1200 новых элементов и более 500 новых SPICE-моделей от ведущих производителей, таких, как Analog Devices, Linear Technology и Texas Instruments, а также более 100 новых моделей импульсных источников питания.

Помимо этого, в новой версии программного обеспечения появился помощник Convergence Assistant, который автоматически корректирует параметры SPICE, исправляя ошибки моделирования, была добавлена поддержка стандартов BSIM 4, а так же расширены возможности отображения и анализа данных, включая новый пробник для значений тока и обновленные статические пробники для дифференциальных измерений.

Создание электрических схем представляет собой вычерчивание их на рабочем поле. На первом этапе после запуска программы необходимо вынести требующиеся элементы из библиотек, а потом соединить их заданным образом.

Чтобы вынести элемент из библиотеки необходимо однократно щёлкнуть левой кнопкой мышки на библиотеке. Появится окно с компонентами библиотеки. Затем, однократно щёлкнув по элементу необходимо переместить указатель мышки на рабочее поле, после чего, щёлкнув мышкой по любой точке рабочего поля, вы помещаете туда элемент.

Соединение элементов осуществляется следующим образом: при наведении указателя мышки на один из зажимов элемента она примет вид крестика, далее однократно щёлкнув левой кнопкой мыши начните перемещать указатель мышки. За ним потянется пунктирная линия. Для необходимости сделать перегиб линии в заданной точке щёлкните левой кнопкой мыши. Когда вы подведёте указатель мыши к свободному выводу элемента, узлу или проводнику (соединительной линии) и щёлкните левой кнопкой мыши, то появится линия, соединяющая элементы (проводник).

Сопротивление проводников в Multisim нулевое. Необходимо иметь ввиду, что схема обязательно должна быть заземлена, и на рабочем поле должен присутствовать хотя бы один измерительный прибор. Заземление подключается к любой точке схемы.

Когда схема собрана, и подключены все необходимые измерительные приборы, то можно начать симуляцию (включить схему). Включение осуществляется выключателем в верхнем правом углу экрана. После включения схемы модель начинает работать. После снятия необходимых данных схему надо отключить. Любые изменения в схемы возможны только в отключенном режиме.

Возможности системы схемотехнического моделирования определяются многими факторами, в том числе составом элементов из которых формируется эквивалентная схема.

Последовательное выполнение команд P lace\ Component… (Ctrl+W) вызывает панель «Seleсt a Component». С помощью мастера библиотеки «Master Library» следует выбрать из базы данных «Database» необходимый набор библиотечных компонентов. Все компоненты распределены по нескольким тематическим группам и подгруппам (рис.2.4). Вначале следует выбрать название группы «Group» (например, «Sources» - источники). Затем задать имя подгруппы «Family» (например, «POWER_SOURCES» - источники энергии). В графе «Component» будут приведен перечень элементов данного раздела библиотеки:

    АС POWER – источник переменного тока;

    DС POWER – источник постоянного тока;

    DGND – цифровая земля;

    GROUND – аналоговая земля;

    THREE PHASE DELTA – трехфазный источник (треугольник);

    THREE PHASE WYE – трехфазный источник (звезда),

и другие.

Рис.2.4. Часть окна выбора элементов схемы

Каждая позиция с именем элемента (например, полупроводникового диода) содержит множество конкретных приборов, выпускаемых различными фирмами и отличающихся значениями параметров.

Наряду с источниками «Sources» при моделировании электрических цепей используются базовые элементы группы «Basic» (рис.2.5).

Рис.2.5. Группа базовых элементов

В группу включены различные типы резисторов, конденсаторов, катушек индуктивности, трансформаторов, переключателей и других элементов. Вместе с промышленными элементами в библиотеке имеются виртуальные компоненты, параметры которых в рамках математического описания может устанавливать пользователь. Избранный элемент имеет по умолчанию некоторый начальный набор типовых параметров. Виртуальные элементы отличаются более простой процедурой их вызова щелчком левой кнопки мыши на ярлыке группы элементов и последующего помещения выбранного компонента на рабочее поле (см. рис.2.1).

Каждая группа содержит несколько типов виртуальных элементов. Источники сигналов “Sources” образуют две группы (рис.2.6).

Рис.2.6. Панели виртуальных источников энергии (а ) и сигналов различной формы (б )

Наряду с уже рассмотренными источниками энергии имеются источники напряжения и тока, выдающие сигналы различной формы: постоянные и синусоидальные, синусоидальные и модуляцией амплитуды или частоты, прямоугольных импульсов, экспоненциальных импульсов, сложной формы с кусочно-линейной аппроксимацией, белого шума.

Группа элементов “Basic” содержит пассивные схемные компоненты (резисторы, конденсаторы, индуктивности, трансформаторы) и другие элементы (рис.2.7,а ).

Рис.2.7. Панели виртуальных элементов “Basic” (а ), “Transistors”(б ) и “Diodes” (в )

Группы “Diodes…” (рис.2.7,в ), “Transistors…” (рис.2.7,б ), содержат полупроводниковые диоды и транзисторы различных типов: биполярные и полевые.

Группа разнообразных элементов “Miscellaneous” (рис.2.8,а ) содержит аналоговый коммутатор, кварцевый резонатор, плавкий предохранитель, лампу, двигатель постоянного тока, оптрон, цифровые индикаторы, таймер и другие элементы. Группа измерительных и индикаторных устройств “Measurement С…” (рис.2.8,б ) представлена набором разноцветных светодиодов и универсальных цифровых амперметров и вольтметров с разной ориентацией на рабочем поле.

Рис.2.8. Панели виртуальных разных элементов (а ), индикаторов и измерителей (б )

Имеются также группы операционных усилителей, цифровых логических элементов и микросхем. Для иллюстрации «сборки» схем с использованием «реальных»элементов в библиотеку введены их трехмерные изображения (рис.2.9).

Рис.2.9. Панель с изображением виртуальных элементов

Информацию о выбранном библиотечном элементе (модели, характеристики, параметры и примеры использования) можно получить с помощью быстрой помощи.

Для этого следует разместить элемент на рабочем поле:

    открыть щелчком левой кнопки мыши соответствующую панель;

    выбрать щелчком левой кнопки мыши требуемый элемент;

    с помощью курсора поместить его в заданную область поля.

Если элемент уже находится на рабочем поле, то его необходимо выделить щелчком левой кнопки мыши (при этом границы элемента будут отмечены черными квадратиками). Вызвать панель операций с изображением элемента щелчком правой кнопки мыши и на ней щелчком левой кнопки мыши выбрать команду “Help”. Откроется панель “Msmapp” контекстной помощи на английском языке (рис.2.10).

Рис.2.10. Контекстная справка о характеристиках диода

Из приведенного перечня выбрать требуемый раздел помощи (например, статические характеристики полупроводникового диода) и ознакомиться с ними или распечатать для более подробного изучения.