Решение интегралов вида. Примеры вычисления определённых интегралов. Интегрирование выражений вида \(\textstyle \int \sinn x \cosm x dx \)

Для решения упражнений по теме «Интегрирование» рекомендуется следующая литература:

1. . Математический анализ. Неопределённый интеграл. Определённый интеграл: учебное пособие . – М.: МГИУ, 2006. – 114 с.: ил. 20.

2. , и др. Задачи и упражнения по математическому анализу для втузов/Под ред. . (любой год издания).

Семинар №1.

Нахождение неопределённых интегралов с помощью основных правил интегрирования и таблицы неопределённых интегралов.

https://pandia.ru/text/78/291/images/image002_164.gif" width="113 height=27" height="27">, то,

где С – произвольная постоянная,

2) , где k – постоянная величина,

4) .

https://pandia.ru/text/78/291/images/image008_45.gif" width="24" height="28 src="> Под знаком интеграла стоит произведение двух постоянных, которое есть, естественно, тоже постоянная. Согласно основному правилу интегрирования 2), выносим её за знак интеграла.

(2) Используем формулу 1) Таблицы интегралов.

https://pandia.ru/text/78/291/images/image010_36.gif" width="569" height="44 src=">.gif" width="481" height="75 src=">

https://pandia.ru/text/78/291/images/image014_25.gif" width="255" height="32 src=">. В нашем случае , https://pandia.ru/text/78/291/images/image017_22.gif" width="75 height=47" height="47">, то .

(3) Воспользуемся основным правилом 3) интегрирования (интеграл от суммы функций равен сумме интегралов от этих функций).

(4) Пользуемся формулой 1) Таблицы интегралов и основным правилом интегрирования 4), положив , т. е.

.

https://pandia.ru/text/78/291/images/image022_9.gif" width="551" height="91 src=">

https://pandia.ru/text/78/291/images/image024_8.gif" width="449" height="101 src=">.

(1) Воспользуемся формулой сокращённого умножения

https://pandia.ru/text/78/291/images/image026_7.gif" width="103" height="37 src=">).

(2) Пользуемся свойством степеней ().

(4) В каждом из слагаемых под знаком интеграла пользуемся свойством степеней (https://pandia.ru/text/78/291/images/image029_7.gif" width="325" height="56 src=">.

(1) Поменяем два слагаемых местами в знаменателе подынтегрального выражения, чтобы получить табличный интеграл.

(2) Воспользуемся формулой 6) Таблицы интегралов..gif" width="364 height=61" height="61">.

(1) Поменяем два слагаемых местами под знаком корня в знаменателе подынтегрального выражения, чтобы получить табличный интеграл.

(2) Воспользуемся формулой 11) Таблицы интегралов.

https://pandia.ru/text/78/291/images/image033_5.gif" width="625" height="75 src=">

https://pandia.ru/text/78/291/images/image035_5.gif" width="459" height="67 src=">

https://pandia.ru/text/78/291/images/image037_5.gif" width="535" height="67 src=">

(1) Подставляем .

(2) Из основного тригонометрического тождества имеем .

(3) Почленно делим каждое слагаемое числителя на знаменатель.

(4) Воспользуемся основным правилом 3) интегрирования (интеграл от суммы функций равен сумме интегралов от этих функций).

(5) Пользуемся формулой 15) Таблицы интегралов и основным правилом интегрирования 4), положив , т. е. .

Упражнения. №№ 000, 1034, 1036, 1038, 1040, 1042, 1044, 1046, 1048(а) из задачника .

Семинар №2

Интегрирование методом замены переменной

Если интеграл не является табличным, то часто используют замену переменной, а именно, полагая https://pandia.ru/text/78/291/images/image044_5.gif" width="39" height="27 src="> - непрерывно дифференцируемая функция. Подставляя в интеграл, будем иметь

Функцию https://pandia.ru/text/78/291/images/image043_5.gif" width="71" height="27"> получаем и подставляем в первообразную, зависящую от переменной t , получая в итоге первообразную зависящую от первоначальной переменной x , т. е. возвращаемся к старой переменной. Возвращаться к старой переменной следует обязательно!

В этом примере уже указана замена переменной .

https://pandia.ru/text/78/291/images/image049_5.gif" width="525" height="115 src=">

https://pandia.ru/text/78/291/images/image051_3.gif" width="408" height="83 src=">

https://pandia.ru/text/78/291/images/image053_3.gif" width="256 height=67" height="67">, так как .

При подстановке имеем .

(2) Умножаем числитель и знаменатель на .

(3) Этот интеграл «похож» на табличные 9) и 10), но заметим, что в том и другом коэффициент при квадрате неизвестного равен 1. Поэтому под корнем выносим коэффициент при за скобки.

(4) Пользуемся свойством корня квадратного из произведения двух положительных сомножителей: если и , то .

(5) Выделяем под знаком интеграла множитель.

(6) Выносим этот множитель за знак интеграла, согласно Основному правилу 2) интегрирования.

(7) Согласно формуле 10) Таблицы неопределённых интегралов получаем ответ, зависящий от переменной . Здесь , .

(8) Возвращаемся к старой переменной, проводя обратную замену, т. е..gif" width="611" height="115 src="> =

https://pandia.ru/text/78/291/images/image067_2.gif" width="47" height="21"> имеем , для нашего примера .

(2) Пользуемся основным логарифмическим тождеством: https://pandia.ru/text/78/291/images/image071_2.gif" width="111 height=32" height="32">.

(3) Приводим к общему знаменателю выражение, стоящее в знаменателе.

(4) Умножаем числитель и знаменатель подынтегрального выражения на https://pandia.ru/text/78/291/images/image072_2.gif" width="581" height="53 src=">

https://pandia.ru/text/78/291/images/image074_2.gif" width="179" height="53 src=">. Запомним это на будущее.

В этом примере также замена переменной уже указана.

https://pandia.ru/text/78/291/images/image076_2.gif" width="621" height="64 src=">.

Очень часто бывает целесообразно попробовать замену , если выражение имеется под знаком интеграла или замену https://pandia.ru/text/78/291/images/image080_2.gif" width="80" height="33">где - некоторое целое положительное число Дифференциал" href="/text/category/differentcial/" rel="bookmark">дифференциала .

Если подынтегральная функция зависит от выражения , то можно дать некоторые рекомендации по замене переменной.

https://pandia.ru/text/78/291/images/image085.jpg" width="600" height="372 src=">

https://pandia.ru/text/78/291/images/image087_2.gif" width="557" height="68 src=">

https://pandia.ru/text/78/291/images/image089_2.gif" width="343" height="64 src=">

https://pandia.ru/text/78/291/images/image091_2.gif" width="591" height="101 src=">

https://pandia.ru/text/78/291/images/image093_2.gif" width="597" height="101 src=">

https://pandia.ru/text/78/291/images/image095_2.gif" width="113" height="27">..gif" width="108" height="27 src=">.

В самом деле,

https://pandia.ru/text/78/291/images/image099_2.gif" width="125" height="27 src=">

То есть в случае, когда подынтегральная функция имеет вид https://pandia.ru/text/78/291/images/image100_2.gif" width="48" height="27"> под знак дифференциала:

https://pandia.ru/text/78/291/images/image102_2.gif" width="292" height="29 src=">. Далее делаем замену переменной .

Такого рода преобразование иногда называют «подведение под знак дифференциала».

Прежде чем разбирать примеры на эту тему, приведём таблицу, которую можно получить из таблицы неопределённых интегралов

https://pandia.ru/text/78/291/images/image105_1.gif" width="96" height="53 src=">.gif" width="135" height="53 src=">,

https://pandia.ru/text/78/291/images/image109_1.gif" width="147" height="55 src=">,

https://pandia.ru/text/78/291/images/image111_1.gif" width="172" height="60 src=">,

https://pandia.ru/text/78/291/images/image113_1.gif" width="155" height="23 src=">,

https://pandia.ru/text/78/291/images/image115_1.gif" width="128" height="55 src=">,

https://pandia.ru/text/78/291/images/image117_1.gif" width="209" height="53 src=">,

https://pandia.ru/text/78/291/images/image119_1.gif" width="215" height="53 src="> и т. д.

https://pandia.ru/text/78/291/images/image121_1.gif" width="393" height="48 src=">.

https://pandia.ru/text/78/291/images/image123_1.gif" width="587" height="101 src=">

https://pandia.ru/text/78/291/images/image125_1.gif" width="155" height="27">, то целесообразна замена . Тогда имеем

https://pandia.ru/text/78/291/images/image128_1.gif" width="592" height="88 src=">=

.

https://pandia.ru/text/78/291/images/image133_1.gif" width="560" height="60 src=">

.

https://pandia.ru/text/78/291/images/image136_1.gif" width="560" height="59 src=">.

Упражнения №№ 000, 1088, 1151, 1081, 1082, 1094.

Семинар №4

Метод интегрирования по частям в неопределённом интеграле

Этот метод основан на следующей теореме.

Теорема. Пусть функции и имеют конечные производные в промежутке , и в этом промежутке существует первообразная для функции. Тогда в промежутке существует первообразная для функции и справедлива формула

Эту формулу можно записать в виде

.

Задача при интегрировании по частям заключается в том, чтобы подынтегральное выражение представить в виде произведения так, чтобы интеграл был проще, чем , т. е. нельзя выбирать и произвольно, так как можно получить более сложный интеграл https://pandia.ru/text/78/291/images/image149_1.gif" width="45 height=29" height="29">.

Практика показывает, что большая часть интегралов «берущихся» по частям может быть разбита на три группы:

https://pandia.ru/text/78/291/images/image151.jpg" width="636" height="396 src=">

Эти интегралы находятся двукратным интегрированием по частям.

Замечание . В первой группе интегралов для интегралов вместо может быть многочлен зависящий от необязательно целой положительной степени (например https://pandia.ru/text/78/291/images/image156_0.gif" width="33" height="28 src=">.gif" width="35" height="45 src="> и т. д.).

В этом примере разбиение на множители и единственно возможное, что бывает не очень часто.

При нахождении выражения для в методе интегрирования по частям постоянную C можно положить равной нулю (см. стр.22).

https://pandia.ru/text/78/291/images/image163_0.gif" width="552" height="57 src=">

https://pandia.ru/text/78/291/images/image165_0.gif" width="623" height="176 src=">

https://pandia.ru/text/78/291/images/image167_0.gif" width="512" height="53 src=">

https://pandia.ru/text/78/291/images/image169_0.gif" width="25" height="23"> можно представить как ..gif" width="93" height="53 src=">.

https://pandia.ru/text/78/291/images/image174_0.gif" width="503" height="33 src=">.

Это пример также из второй группы интегралов.

https://pandia.ru/text/78/291/images/image176_0.gif" width="591" height="72 src=">

https://pandia.ru/text/78/291/images/image178_0.gif" width="197" height="28 src=">.

Таким образом, получаем уравнение относительно искомого интеграла https://pandia.ru/text/78/291/images/image180_0.gif" width="212 height=28" height="28">.

Переносим слагаемое в левую часть уравнения и получаем эквивалентное уравнение

решая которое, получаем ответ:

.

Этот пример из третьей группы интегралов. Здесь мы дважды применили интегрирование по частям.

Упражнения. №№ 000, 1214, 1226, 1221, 1217, 1218, 1225, 1223,

Семинар №5

Вычисление определённых интегралов

Вычисление определённых интегралов основано на свойствах определённого интеграла и формуле Ньютона-Лейбница.

Приведём основные свойства определённого интеграла

1) Каковы бы ни были числа a , b , c всегда имеет место равенство

https://pandia.ru/text/78/291/images/image185_0.gif" width="188" height="61 src=">.

3) Определённый интеграл от алгебраической суммы двух (конечного числа) функций равен алгебраической сумме их интегралов, т. е.

https://pandia.ru/text/78/291/images/image187_0.gif" width="47" height="27 src="> есть некоторая первообразная от непрерывной функции , то справедлива формула

.

Вычисление определённого интеграла как предела интегральных сумм – достаточно трудоёмкое дело даже для элементарных функций. Формула Ньютона-Лейбница позволяет свести вычисление определённого интеграла к нахождению неопределённого интеграла, когда известна первообразная подынтегральной функции. Значение определённого интеграла равно разности значений первообразной на верхнем и нижнем пределе интегрирования.

Примеры вычисления определённого интеграла в простейших случаях

https://pandia.ru/text/78/291/images/image191_0.gif" width="28" height="71 src=">.gif" width="387" height="61 src=">.gif" width="40" height="28 src=">.gif" width="41" height="21 src=">.gif" width="541" height="67 src=">

https://pandia.ru/text/78/291/images/image199.jpg" width="600" height="145 src=">

.

При использовании метода замены переменной в определённом интеграле надо иметь в виду два момента.

https://pandia.ru/text/78/291/images/image202.jpg" width="648" height="60 src=">

https://pandia.ru/text/78/291/images/image204.gif" width="319" height="61 src=">.gif" width="89" height="32 src=">.gif" width="525" height="28 src=">.

Интегрирование по частям в определённом интеграле

При использовании формулы интегрирования по частям в определённом интеграле иногда оказывается, например, что , поэтому сразу же следует вычислять выражение , не откладывая это до тех пор, пока не будет найдена вся первообразная.

https://pandia.ru/text/78/291/images/image213.gif" width="29" height="91 src=">.gif" width="221" height="53 src=">.gif" width="365" height="59 src=">.

Упражнения . №№ 000, 1522, 1525, 1531, 1583, 1600,1602.

Семинар № 6

Несобственные интегралы

Несобственные интегралы первого рода

Несобственные интегралы первого рода – это интегралы с бесконечными пределами (или одним бесконечным пределом). Это интегралы вида , , . Пусть функция интегрируема на любом конечном отрезке, заключённом внутри промежутка интегрирования. Тогда, по определению

https://pandia.ru/text/78/291/images/image222.gif" width="227 height=60" height="60">.gif" width="235 height=76" height="76">.

Если приведённые пределы существуют и конечны, то говорят, что несобственные интегралы сходятся. Если не существуют или бесконечны, то говорят, что расходятся (подробнее см. стр.72-76).

https://pandia.ru/text/78/291/images/image226.gif" width="47" height="21 src="> имеем

https://pandia.ru/text/78/291/images/image228.gif" width="31" height="71 src=">.gif" width="191" height="88 src=">

Если https://pandia.ru/text/78/291/images/image232.gif" width="188" height="60 src=">.gif" width="199" height="43 src=">.

Таким образом, данный интеграл сходится при и расходится при.

Исследовать на сходимость несобственный интеграл

https://pandia.ru/text/78/291/images/image239.gif" width="31" height="71 src=">=

https://pandia.ru/text/78/291/images/image241.gif" width="417" height="56 src=">,

Исследовать на сходимость несобственный интеграл

.

https://pandia.ru/text/78/291/images/image244.gif" width="303" height="61">.gif" width="523" height="59 src=">,

т. е. данный несобственный интеграл сходится.

Слово «интеграл» происходит от латинского integralis - целостный. Это название предложил в 17 в. ученик великого Лейбница (и также выдающийся математик) И. Бернулли. А что такое интеграл в современном понимании? Ниже мы постараемся дать всесторонний ответ на этот вопрос.

Исторические предпосылки возникновения понятия интеграла

В начале 17 в. в рассмотрении ведущих ученых находилось большое число физических (прежде всего механических) задач, в которых нужно было исследовать зависимости одних величин от других. Самыми наглядными и насущными проблемами были определение мгновенной скорости неравномерного движения тела в любой момент времени и обратная этой задача нахождения величины пути, пройденного телом за определенный промежуток времени при таком движении. Сегодня мы уже знаем, что такое интеграл от скорости движения - это и есть пройденный путь. Но понимание того, как его вычислять, зная скорость в каждый момент времени, появилось не сразу.

Поначалу из рассмотрения таких зависимостей физических величин, например, пути от скорости, было сформировано математическое понятие функции y = f(x). Исследование свойств различных функций привело к зарождению математического анализа. Ученые активно искали способы изучения свойств различных функций.

Как возникло вычисление интегралов и производных?

После создания Декартом основ аналитической геометрии и появления возможности изображать функциональные зависимости графически в осях декартовой системы координат, перед исследователями встали две крупные новые задачи: как провести касательную к кривой линии в любой ее точке и как найти площадь фигуры, ограниченной сверху этой кривой и прямыми, параллельными осям координат. Неожиданным образом оказалось, что первая из них эквивалентна нахождению мгновенной скорости, а вторая - нахождению пройденного пути. Ведь он при неравномерном движении изображался в декартовых осях координат «расстояние» и «время» некоторой кривой линией.

Гением Лейбница и Ньютона в середине 17 в. были созданы методы, позволившие решать обе эти задачи. Оказалось, что для проведения касательной к кривой в точке нужно найти величину так называемой производной от функции, описывающей эту кривую, в рассматриваемой ее точке, и эта величина оказывается равной скорости изменения функции, т. е. применительно к зависимости «путь от скорости» собственно мгновенной скоростью тела.

Для нахождения же площади, ограниченной кривой линией, следовало вычислить определенный интеграл, который давал ее точную величину. Производная и интеграл - основные понятия дифференциального и интегрального исчисления, являющихся базисом современного матанализа - важнейшего раздела высшей математики.

Площадь под кривой линией

Итак, как же определить ееточную величину? Попробуем раскрыть процесс ее вычисления через интеграл подробно, с самых азов.

Пусть f является непрерывной на отрезке функцией. Рассмотрим кривую у = f(x), изображенную на рисунке ниже. Как найти площадь области, ограниченной кривой), осью х, и линиями х = а и х = b? То есть площадь заштрихованной фигуры на рисунке.

Самый простой случай, когда f является постоянной функцией; то есть, кривая есть горизонтальная линия f(X) = k, где k постоянная и k ≥ 0, как показано на рисунке ниже.

В этом случае область под кривой - всего лишь прямоугольник с высотой k и шириной (b - a), так что площадь определяется как: k · (b - а).

Области некоторых других простых фигур, таких как треугольник, трапеция и полуокружность, даются формулами из планиметрии.

Площадь под любой непрерывной кривой у = f(х) дается определенным интегралом, который записывается так же, как обычный интеграл.

Риманова сумма

Прежде чем погрузиться в подробный ответ на вопрос, что такое интеграл, выделим некоторые основные идеи.

Во-первых, область под кривой делится на некоторое число n вертикальных полос достаточно малой ширины Δx. Далее каждая вертикальная полоса заменяется вертикальным прямоугольником высотой f(х), шириной Δx, и площадью f(х)dx. Следующим шагом является формирование суммы площадей всех этих прямоугольников, называемой Римановой суммой (смотрите рисунки ниже).

Рисуя наши прямоугольники шириной Δx, мы можем брать их высоту, равную значению функции на левом краю каждой полоски, т. е. на кривой будут лежать крайние левые точки их верхних коротких сторон шириной Δx. При этом на участке, где функция растет, и ее кривая является выпуклой, все прямоугольники оказываются ниже этой кривой, т. е. их сумма будет заведомо меньшей точной величины площади под кривой на этом участке (см. рисунок ниже). Такой способ аппроксимации называется левосторонним.

В принципе, можно нарисовать аппроксимирующие прямоугольники таким образом, чтобы на кривой лежали крайние правые точки их верхних коротких сторон шириной Δx. Тогда они будут выше кривой, и приближение площади на этом участке окажется больше ее точной величины, как показано на рисунке ниже. Этот способ носит название правостороннего.

Но мы можем также взять высоту каждого из аппроксимирующих прямоугольников, равной просто некоторому значению функции в произвольной точке x* i внутри соответствующей полоски Δx i (смотри рис. ниже). При этом мы даже можем не брать одинаковую ширину всех полосок.

Составим Риманову сумму:

Переход от Римановой суммы к определенному интегралу

В высшей математике доказывается теорема, которая гласит, что если при неограниченном возрастании числа n аппроксимирующих прямоугольников наибольшая их ширина стремится к нулю, то Риманова сумма A n стремится к некоторому пределу A. Число A - одно и то же при любом способе образования аппроксимирующих прямоугольников и при любом выборе точек x* i .

Наглядное пояснение теоремы дает рисунок ниже.

Из него видно, что, чем уже прямоугольники, тем ближе площадь ступенчатой фигуры к площади под кривой. При числе прямоугольников n→∞ их ширина Δx i →0, а предел A суммы A n численно равен искомой площади. Этот предел и есть определенный интеграл функцииf (х):

Символ интеграла, представляющий собой видоизмененную курсивную литеру S, был введен Лейбницем. Ставить сверху и снизу обозначения интеграла его пределы предложил Ж. Б. Фурье. При этом ясно указывается начальное и конечное значение x.

Геометрическое и механическое истолкование определенного интеграла

Попробуем дать развернутый ответ на вопрос о том, что такое интеграл? Рассмотрим интеграл на отрезке от положительной внутри него функции f(х), причем считаем, что верхний предел больше нижнего a

Если ординаты функции f(х) отрицательны внутри , то абсолютное значение интеграла равно площади между осью абсцисс и графиком y=f(х), сам же интеграл отрицателен.

В случае же однократного или неоднократного пересечения графиком y=f(х) оси абсцисс на отрезке , как показано на рисунке ниже, для вычисления интеграла нужно определить разность, в которой уменьшаемое будет равно суммарной площади участков, находящихся над осью абсцисс, а вычитаемое - суммарной площади участков, находящихся под ней.

Так, для функции, показанной на рисунке выше, определенный интеграл от a до b будет равен (S1 + S3) - (S2+S4).

Механическое истолкование определенного интеграла тесно связано с геометрическим. Вернемся к разделу «Риманова сумма» и представим, что приведенный на рисунках график выражает функцию скорости v=f(t) при неравномерном движении материальной точки (ось абсцисс является осью времени). Тогда площадь любого аппроксимирующего прямоугольника шириной Δt, который мы строили при формировании Римановой суммы, будет выражать приближенно путь точки за время Δt, а именно v(t*)Δt.

Полная сумма площадей прямоугольников на отрезке от t 1 =a до t 2 =b выразит приближенно путь s за время t 2 - t 1 , а предел ее, т. е. интеграл (определенный) от a до b функции v = f(t) по dt даст точное значение пути s.

Дифференциал определенного интеграла

Если вернуться к его обозначению, то вполне можно предположить, что a = const, а b является конкретным значением некоторой независимой переменной x. Тогда определенный интеграл с верхним пределом x̃ из конкретного числа превращается в функцию от x̃. Такой интеграл равен площади фигуры под кривой, обозначенной точками aABb на рисунке ниже.

При неподвижной линии aA и подвижной Bb эта площадь становится функцией f(x̃), причем приращения Δx̃ по-прежнему откладываются вдоль оси х, а приращением функции f(x̃) являются приращения площади под кривой.

Предположим, что мы дали переменной x̃ = b некоторое малое приращение Δx̃. Тогда приращение площади фигуры aABb складывается из площади прямоугольника (заштрихован на рисунке) Bb∙Δx̃ и площади фигуры BDC под кривой. Площадь прямоугольника равна Bb∙Δx̃ = f(x̃)Δx̃, т.е она является линейной функцией приращения независимой переменной. Площадь же фигуры BDC заведомо меньше, чем площадь прямоугольника BDCK = Δx̃∙Δy, и при стремлении Δx̃ →0 она уменьшается еще быстрее него. Значит, f(x̃)Δx̃ = f(x̃)dx̃ есть дифференциал переменной площади aABb, т. е. дифференциал определенного интеграла

Отсюда можно заключить, что вычисление интегралов заключается в разыскании функций по заданным выражениям их дифференциалов. Интегральное исчисление как раз и представляет собой систему способов разыскания таких функций по известным их дифференциалам.

Фундаментальное соотношение интегрального исчисления

Оно связывает отношения между дифференцированием и интегрированием и показывает, что существует операция, обратная дифференцированию функции, - ее интегрирование. Оно также показывает, что если любая функция f(х) непрерывна, то применением к ней этой математической операции можно найти целый ансамбль (совокупность, множество) функций, первообразных для нее (или иначе, найти неопределенный интеграл от нее).

Пусть функция F(x) является обозначением результата интегрирования функции f(х). Соответствие между этими двумя функциями в результате интегрирования второй из них обозначается следующим образом:

Как видно, при символе интеграла отсутствуют пределы интегрирования. Это означает, что из определенного он преобразован в неопределенный интеграл. Слово «неопределенный» означает, что результатом операции интегрирования в данном случае является не одна, а множество функций. Ведь, кроме собственно функции F(x), последним выражениям удовлетворяет и любая функция F(x)+С, где С = const. При этом подразумевается, что постоянный член в ансамбле первообразных можно задавать по произволу.

Следует подчеркнуть, что, если интеграл, определенный от функции, является числом, то неопределенный есть функция, точнее, их множество. Термин «интегрирование» применяется для определения операции разыскания обоих видов интегралов.

Основное правило интегрирования

Оно представляет собой полную противоположность соответствующему правилу для дифференцирования. Как же берутся неопределенные интегралы? Примеры этой процедуры мы рассмотрим на конкретных функциях.

Давайте посмотрим на степенную функцию общего вида:

После того как мы сделали это с каждым слагаемым в выражении интегрируемой функции (если их несколько), мы добавляем постоянную в конце. Напомним, что взятие производной от постоянной величины уничтожает ее, поэтому взятие интеграла от любой функции даст нам восстановление этой постоянной. Мы обозначаем ее С, так как постоянная неизвестна - это может быть любое число! Поэтому мы можем иметь бесконечно много выражений для неопределенного интеграла.

Давайте рассмотрим простые неопределенные интегралы, примеры взятия которых показаны ниже.

Пусть нужно найти интеграл от функции:

f(х) = 4x 2 + 2x - 3.

Начнем с первого слагаемого. Мы смотрим на показатель степени 2 и увеличиваем его на 1, затем делим первый член на результирующий показатель 3. Получаем: 4(x 3) / 3.

Затем мы смотрим на следующий член и делаем то же самое. Так как он имеет показатель степени 1, то результирующий показатель будет 2. Таким образом, мы разделим это слагаемое на 2: 2(x 2) / 2 = x 2 .

Последний член имеет множитель х, но мы просто не видим его. Мы можем представить себе последнее слагаемое как (-3x 0). Это эквивалентно (-3)∙(1). Если мы используем правило интегрирования, мы добавим 1 к показателю, чтобы поднять его до первой степени, а затем разделим последний член на 1. Получим 3x.

Это правило интегрирования работает для всех значений n, кроме n = - 1 (потому что мы не можем разделить на 0).

Мы рассмотрели самые простой пример нахождения интеграла. Вообще же решение интегралов является делом непростым, и в нем хорошим подспорьем является уже накопленный в математике опыт.

Таблицы интегралов

В разделе выше мы видели, что из каждой формулы дифференцирования получается соответствующая формула интегрирования. Поэтому все возможные их варианты уже давно получены и сведены в соответствующие таблицы. Нижеприведенная таблица интегралов содержит формулы интегрирования основных алгебраических функций. Эти формулы нужно знать на память, заучивая их постепенно, по мере их закрепления упражнениями.

Еще одна таблица интегралов содержит основные тригонометрические функции:

Как же вычислить определенный интеграл

Оказывается, сделать это, умея интегрировать, т. е. находить неопределенные интегралы, очень просто. И помогает в этом формула основателей интегро-дифференциального исчисления Ньютона и Лейбница

Согласно ей, вычисление искомого интеграла состоит на первом этапе в нахождении неопределенного, последующем вычислении значения найденной первообразной F(x) при подстановке x, равного сначала верхнему пределу, затем нижнему и, наконец, в определении разности этих значений. При этом константу С можно не записывать. т.к. она пропадает при выполнении вычитания.

Рассмотрим некоторые интегралы с подробным решением.

Найдем площадь участка под одной полуволной синусоидой.

Вычислим заштрихованную площадь под гиперболой.

Рассмотрим теперь интегралы с подробным решением, использующим в первом примере свойство аддитивности, а во втором - подстановку промежуточной переменной интегрирования. Вычислим определенный интеграл от дробно-рациональной функции:

y=(1+t)/t 3 от t=1 до t=2.

Теперь покажем, как можно упростить взятие интеграла введением промежуточной переменной. Пусть нужно вычислить интеграл от (x+1) 2 .

О несобственных интегралах

Мы говорили об определенном интеграле для конечного промежутка от непрерывной на нем функции f(х). Но ряд конкретных задач приводит к необходимости расширить понятие интеграла на случай, когда пределы (один или оба) равны бесконечности, или при разрывной функции. Например, при вычислении площадей под кривыми, асимптотически приближающимися к осям координат. Для распространения понятия интеграла на этот случай, кроме предельного перехода при вычислении Римановой суммы аппроксимирующих прямоугольников, выполняется еще один. При таком двукратном переходе к пределу получается несобственный интеграл. В противоположность ему все интегралы, о которых говорилось выше, называются собственными.

Калькулятор решает интегралы c описанием действий ПОДРОБНО на русском языке и бесплатно!

Решение неопределённых интегралов

Это онлайн сервис в один шаг :

Решение определённых интегралов

Это онлайн сервис в один шаг :

  • Ввести подинтегральное выражение (подинтегральную функцию)
  • Ввести нижний предел для интеграла
  • Ввести верхний предел для интеграла

Решение двойных интегралов

  • Ввести подинтегральное выражение (подинтегральную функцию)

Решение несобственных интегралов

  • Ввести подинтегральное выражение (подинтегральную функцию)
  • Введите верхнюю область интегрирования (или + бесконечность)
  • Ввести нижнюю область интегрирования (или - бесконечность)

Решение тройных интегралов

  • Ввести подинтегральное выражение (подинтегральную функцию)
  • Ввести нижний и верхний пределы для первой области интегрирования
  • Ввести нижний и верхний предел для второй области интегрирования
  • Ввести нижний и верхний предел для третьей области интегрирования

Данный сервис позволяет проверить свои вычисления на правильность

Возможности

  • Поддержка всех возможных математических функций: синус, косинус, экспонента, тангенс, котангенс, корень квадратный и кубический, степени, показательные и другие.
  • Есть примеры для ввода, как для неопределённых интегралов, так и для несобственных и определённых.
  • Исправляет ошибки в ведённых вами выражениях и предлагает свои варианты для ввода.
  • Численное решение для определённых и несобственных интегралов (в том числе для двойных и тройных интегралов).
  • Поддержка комплексных чисел, а также различных параметров (вы можете указывать в подинтегральном выражении не только переменную интегрирования, но и другие переменные-параметры)

4.1. ПРОСТЕЙШИЕ МЕТОДЫ ИНТЕГРИРОВАНИЯ 4.1.1. Понятие неопределенного интеграла

В дифференциальном исчислении рассматривалась задача нахождения производной или дифференциала по заданной функции y = F(x), т. е. необходимо было найти f (x) = F"(x) или dF(x) = F"(x) dx = f (x) dx. Поставим обратную задачу: восстановить продифференцированную функцию, т. е., зная производную f(x) (или дифференциал f(x)dx), найти такую функцию F(x), чтобы F"(x) = f (x). Эта задача оказывается значительно более трудной, чем задача дифференцирования. Например, пусть известна скорость перемещения точки, а надо найти закон

ее перемещения S = S(t), причемДля решения подобных

задач вводятся новые понятия и действия.

Определение. Дифференцируемая функция F(x) называется первообразной для функции f (x) на (a; b), если F"(x) = f (x) на (a; b).

Например, для f (x) = x 2 первообразная так как

для f (x) = cos x первообразной будет F(x) = sin x, потому что F"(x) = (sin x)" = cos x, что совпадает с f (x).

Всегда ли существует первообразная для заданной функции f (x)? Да, если эта функция непрерывна на (a; b). Кроме того, первообразных бесчисленное множество, и отличаются они друг от друга только постоянным слагаемым. Действительно, sin x + 2, sin x - 2, sin x + c - все эти функции будут первообразными для cos x (производная от постоянной величины равна 0) - рис. 4.1.

Определение. Выражение F(x) + C, где С - произвольная постоянная величина, определяющее множество первообразных для функции f (x), называется неопределенным интегралом и обозначается символом , т. е., где знак - знак неопределенного

интеграла, f (x) - называется подынтегральной функцией, f (x)dx - подынтегральньм выражением, х - переменной интегрирования.

Рис. 4.1. Пример семейства интегральных кривых

Определение. Операция нахождения первообразной по заданной производной или дифференциалу называется интегрированием этой функции.

Интегрирование - действие, обратное дифференцированию, его можно проверить дифференцированием, причем дифференцирование однозначно, а интегрирование дает ответ с точностью до постоянной. Придавая постоянной величине С конкретные значенияпо-

лучим различные функции

каждая из которых задает на координатной плоскости кривую, называемую интегральной. Все графики интегральных кривых сдвинуты параллельно относительно друг друга вдоль оси Oy. Следовательно, геометрически неопределенный интеграл представляет собой семейство интегральных кривых.

Итак, введены новые понятия (первообразной и неопределенного интеграла) и новое действие (интегрирование), но как все-таки находить первообразную? Чтобы легко было ответить на этот вопрос, надо в первую очередь составить и выучить наизусть таблицу неопределенных интегралов от основных элементарных функций. Она получается в результате обращения соответствующих формул дифференцирования. Например, если

Обычно в таблицу включаются некоторые интегралы, полученные после применения простейших методов интегрирования. Эти формулы помечены в табл. 4.1 символом «*» и доказаны при дальнейшем изложении материала.

Таблица 4.1. Таблица основных неопределенных интегралов

Формула 11 из табл. 4.1 может иметь вид
,

так как. Аналогичное замечание и по поводу фор-

мулы 13:

4.1.2. Свойства неопределенных интегралов

Рассмотрим простейшие свойства неопределенного интеграла, которые позволят интегрировать не только основные элементарные функции.

1.Производная от неопределенного интеграла равна подынтегральной функции:

2.Дифференциал от неопределенного интеграла равен подынтегральному выражению:

3.Неопределенный интеграл от дифференциала функции равен этой функции, сложенной с произвольной постоянной:

Пример 1. Пример 2.

4.Постоянный множитель можно выносить за знак интеграла: Пример 3.

5.Интеграл от суммы или разности двух функций равен сумме или разности интегралов от этих функций:

Пример 4.

Формула интегрирования остается справедливой, если переменная интегрирования является функцией: если то

Произвольная функция, имеющая непрерывную производную. Это свойство называется инвариантностью.

Пример 5., поэтому

Сравнить с

Универсального способа интегрирования не существует. Далее будут приведены некоторые методы, позволяющие вычислить заданный интеграл с помощью свойств 1-5 и табл. 4.1.

4.1.3.Непосредственное интегрирование

Этот метод заключается в прямом использовании табличных интегралов и свойств 4 и 5. Примеры.


4.1.4.Метод разложения

Этот метод заключается в разложении подынтегральной функции в линейную комбинацию функций с уже известными интегралами.

Примеры.


4.1.5. Метод подведения под знак дифференциала

Для приведения данного интеграла к табличному бывает удобно сделать преобразования дифференциала.

1. Подведение под знак дифференциала линейной функции

отсюда
в частности, dx =
d(x + b),

дифференциал не меняется, если к переменной прибавить

или отнять постоянную величину. Если переменная увеличивается в несколько раз, то дифференциал умножается на обратную величину. Примеры с решениями.

Проверим формулы 9*, 12* и 14* из табл. 4.1, используя метод подведения под знак дифференциала:


что и требовалось доказать.

2. Подведение под знак дифференциала основных элементарных функций:

Замечание. Формулы 15* и 16* могут быть проверены дифференцированием (см. свойство 1). Например,


а это и есть подынтегральная функция из формулы 16*.

4.1.6. Метод выделения полного квадрата из квадратичного трехчлена

При интегрировании выражений типа или

выделением полного квадрата из квадратного трехчлена

ax 2 + bx + c удается свести их к табличным 12*, 14*, 15* или 16* (см. табл. 4.1).

Поскольку в общем виде эта операция выглядит сложнее, чем на самом деле, ограничимся примерами.

Примеры.

1.

Решение. Здесь мы выделяем полный квадрат из квадратного трехчлена x 2 + 6x + 9 = (x 2 + 6x + 9) - 9 + 5 = (x + 3) 2 - 4 , а затем используем метод подведения под знак дифференциала.

Рассуждая аналогично, можно вычислить следующие интегралы:

2. 3.

На заключительном этапе интегрирования была использована формула 16*.

4.1.7. Основные методы интегрирования

Таких методов два: метод замены переменной, или подстановка, и интегрирование по частям.

Метод замены переменной

Существуют две формулы замены переменной в неопределенном интеграле:

1) 2)

Здесьсуть монотонные дифференцируемые функ-

ции своих переменных.

Искусство применения метода состоит, в основном, в выборе функцийтак, чтобы новые интегралы являлись табличными или сводились к ним. В окончательном ответе следует вернуться к старой переменной.

Заметим, что подведение под знак дифференциала является частным случаем замены переменной.

Примеры.

Решение. Здесь следует ввести новую переменную t так, чтобы избавиться от квадратного корня. Положим x + 1 = t, тогда x = t 2 + 1, а dx = 2 tdt:

Решение. Заменив x - 2 на t, получим в знаменателе одночлен и после почленного деления интеграл сведется к табличному от степенной функции:

При переходе к переменной x использованы формулы:

Метод интегрирования по частям

Дифференциал произведения двух функций определяется формулой

Интегрируя это равенство (см. свойство 3), найдем:


ОтсюдаЭто и есть формула интегрирования по

частям.

Интегрирование по частям предполагает субъективное представление подынтегрального выражения в виде u . dV, и при этом интеграл должен быть проще, чемВ противном случае применение

метода не имеет смысла.

Итак, метод интегрирования по частям предполагает умение выделять из подынтегрального выражения сомножители u и dV с учетом вышеизложенных требований.

Приведем ряд типичных интегралов, которые могут быть найдены методом интегрирования по частям. 1. Интегралы вида

где P(x) - многочлен; k - постоянная. В этом случае u = P(x), а dV - все остальные сомножители.

Пример 1.

2.Интегралы типа

Здесь положим- другие сомножители.

Пример 2.


Пример 3.
Пример 4.


Любой результат можно проверить дифференцированием. Напр мер, в данном случае

Результат верен.

3.Интегралы вида

где a, b - const. За u следует взять e ax , sin bx или cos bx.

Пример 5.


Отсюда получаем Пример 6.


Отсюда


Пример 7.
Пример 8.

Решение. Здесь надо сперва сделать замену переменной, а потом интегрировать по частям:

Пример 9.
Пример 10.

Решение. Этот интеграл с равным успехом может быть найден как в результате замены переменной 1 + х 2 = t 2 , так и методом интегрирования по частям:


Самостоятельная работа

Выполнить непосредственное интегрирование (1-10).

Применить простейшие методы интегрирования (11-46).

Выполнить интегрирование, используя методы замены переменной и интегрирования по частям (47-74).

Ранее мы по заданной функции, руководствуясь различными формулами и правилами, находили ее производную. Производная имеет многочисленные применения: это скорость движения (или, обобщая, скорость протекания любого процесса); угловой коэффициент касательной к графику функции; с помощью производной можно исследовать функцию на монотонность и экстремумы; она помогает решать задачи на оптимизацию.

Но наряду с задачей о нахождении скорости по известному закону движения встречается и обратная задача - задача о восстановлении закона движения по известной скорости. Рассмотрим одну из таких задач.

Пример 1. По прямой движется материальная точка, скорость ее движения в момент времени t задается формулой v=gt. Найти закон движения.
Решение. Пусть s = s(t) - искомый закон движения. Известно, что s"(t) = v(t). Значит, для решения задачи нужно подобрать функцию s = s(t), производная которой равна gt. Нетрудно догадаться, что \(s(t) = \frac{gt^2}{2} \). В самом деле
\(s"(t) = \left(\frac{gt^2}{2} \right)" = \frac{g}{2}(t^2)" = \frac{g}{2} \cdot 2t = gt \)
Ответ: \(s(t) = \frac{gt^2}{2} \)

Сразу заметим, что пример решен верно, но неполно. Мы получили \(s(t) = \frac{gt^2}{2} \). На самом деле задача имеет бесконечно много решений: любая функция вида \(s(t) = \frac{gt^2}{2} + C \), где C - произвольная константа, может служить законом движения, поскольку \(\left(\frac{gt^2}{2} +C \right)" = gt \)

Чтобы задача стала более определенной, нам надо было зафиксировать исходную ситуацию: указать координату движущейся точки в какой-либо момент времени, например при t = 0. Если, скажем, s(0) = s 0 , то из равенства s(t) = (gt 2)/2 + C получаем: s(0) = 0 + С, т. е. C = s 0 . Теперь закон движения определен однозначно: s(t) = (gt 2)/2 + s 0 .

В математике взаимно обратным операциям присваивают разные названия, придумывают специальные обозначения, например: возведение в квадрат (х 2) и извлечение квадратного корня (\(\sqrt{x} \)), синус (sin x) и арксинус (arcsin x) и т. д. Процесс нахождения производной по заданной функции называют дифференцированием , а обратную операцию, т. е. процесс нахождения функции по заданной производной, - интегрированием .

Сам термин «производная» можно обосновать «по-житейски»: функция у = f(x) «производит на свет» новую функцию у" = f"(x). Функция у = f(x) выступает как бы в качестве «родителя», но математики, естественно, не называют ее «родителем» или «производителем», они говорят, что это, по отношению к функции у" = f"(x), первичный образ, или первообразная.

Определение. Функцию y = F(x) называют первообразной для функции y = f(x) на промежутке X, если для \(x \in X \) выполняется равенство F"(x) = f(x)

На практике промежуток X обычно не указывают, но подразумевают (в качестве естественной области определения функции).

Приведем примеры.
1) Функция у = х 2 является первообразной для функции у = 2х, поскольку для любого х справедливо равенство (x 2)" = 2х
2) Функция у = х 3 является первообразной для функции у = 3х 2 , поскольку для любого х справедливо равенство (x 3)" = 3х 2
3) Функция у = sin(x) является первообразной для функции y = cos(x), поскольку для любого x справедливо равенство (sin(x))" = cos(x)

При нахождении первообразных, как и производных, используются не только формулы, но и некоторые правила. Они непосредственно связаны с соответствующими правилами вычисления производных.

Мы знаем, что производная суммы равна сумме производных. Это правило порождает соответствующее правило нахождения первообразных.

Правило 1. Первообразная суммы равна сумме первообразных.

Мы знаем, что постоянный множитель можно вынести за знак производной. Это правило порождает соответствующее правило нахождения первообразных.

Правило 2. Если F(x) - первообразная для f(x), то kF(x) - первообразная для kf(x).

Теорема 1. Если y = F(x) - первообразная для функции y = f(x), то первообразной для функции у = f(kx + m) служит функция \(y=\frac{1}{k}F(kx+m) \)

Теорема 2. Если y = F(x) - первообразная для функции y = f(x) на промежутке X, то у функции у = f(x) бесконечно много первообразных, и все они имеют вид y = F(x) + C.

Методы интегрирования

Метод замены переменной (метод подстановки)

Метод интегрирования подстановкой заключается во введении новой переменной интегрирования (то есть подстановки). При этом заданный интеграл приводится к новому интегралу, который является табличным или к нему сводящимся. Общих методов подбора подстановок не существует. Умение правильно определить подстановку приобретается практикой.
Пусть требуется вычислить интеграл \(\textstyle \int F(x)dx \). Сделаем подстановку \(x= \varphi(t) \) где \(\varphi(t) \) - функция, имеющая непрерывную производную.
Тогда \(dx = \varphi " (t) \cdot dt \) и на основании свойства инвариантности формулы интегрирования неопределенного интеграла получаем формулу интегрирования подстановкой:
\(\int F(x) dx = \int F(\varphi(t)) \cdot \varphi " (t) dt \)

Интегрирование выражений вида \(\textstyle \int \sin^n x \cos^m x dx \)

Если m нечётное, m > 0, то удобнее сделать подстановку sin x = t.
Если n нечётное, n > 0, то удобнее сделать подстановку cos x = t.
Если n и m чётные, то удобнее сделать подстановку tg x = t.

Интегрирование по частям

Интегрирование по частям - применение следующей формулы для интегрирования:
\(\textstyle \int u \cdot dv = u \cdot v - \int v \cdot du \)
или:
\(\textstyle \int u \cdot v" \cdot dx = u \cdot v - \int v \cdot u" \cdot dx \)

Таблица неопределённых интегралов (первообразных) некоторых функций

$$ \int 0 \cdot dx = C $$ $$ \int 1 \cdot dx = x+C $$ $$ \int x^n dx = \frac{x^{n+1}}{n+1} +C \;\; (n \neq -1) $$ $$ \int \frac{1}{x} dx = \ln |x| +C $$ $$ \int e^x dx = e^x +C $$ $$ \int a^x dx = \frac{a^x}{\ln a} +C \;\; (a>0, \;\; a \neq 1) $$ $$ \int \cos x dx = \sin x +C $$ $$ \int \sin x dx = -\cos x +C $$ $$ \int \frac{dx}{\cos^2 x} = \text{tg} x +C $$ $$ \int \frac{dx}{\sin^2 x} = -\text{ctg} x +C $$ $$ \int \frac{dx}{\sqrt{1-x^2}} = \text{arcsin} x +C $$ $$ \int \frac{dx}{1+x^2} = \text{arctg} x +C $$ $$ \int \text{ch} x dx = \text{sh} x +C $$ $$ \int \text{sh} x dx = \text{ch} x +C $$