Создание печатной платы на мультисим. Создание схемы в программе multisim. Разработка электрической схемы

  • При попытке установки программы просит все личные данные. С таким подходом пускай себе идёт лесом...
  • Да и сайт какой то левый. Насколько помню мультисим был бесплатен для образования. Очередной минетжер решил срубить бабла?
  • Нафига козе баян, если есть DipTrace. В сети валяется ключик на 1000 выводов / 4 сигнальных слоя, что для любительских нужд вполне достаточно. И никакого разводилова и сомнительного качества...
  • Не стоит овца выделки!
  • Нет ничего проще, доступней и любимей Sprint Layout ... Всё остальное - те же яйца, только в профиль. Доверять трассировке? 3 D модели - если у вас хорошее воображение? Смоделировать - хорошо, сидеть и гадать нае.. ла прога или нет - плохо... Это сродни соревнованию в марке приобретённого автомобиля - не более...
  • Спринт Лайот прост и любим, но функционал его неизмеримо уступает ДипТрейсу. Последнее - полноценная САПР, а не просто рисовалка дорожек. В ДипТрейс-е рисуется схема, преобразуется в плату, делается трассировка. Есть возможность создавать или редактировать компоненты и корпуса. Для мало-мальски серьёзных задач Спринт Лайот оказывается бесполезен. Конечно, можно часами сидеть и делать разводку вручную, но даже со средней сложности задачами "вручную" справиться - невозможно. З.Ы. Да, есть ещё интересная возможность - 3D вид платы показывается.
  • Да что вы все так на неё взъелись? Рисовалка это в последнюю очередь, прежде всего - это хороший симулятор, во-вторых - это автоматизированный заказ деталей у дистрибьютера, чья база данных и используется, для этого и нужна регистрация + бесплатное обновление и техподдержка, наверно многие сталкивались с отсутствием нужных моделей... Ну а заказывать или нет детали у MOUSER? - личное дело каждого...

Этой статьей начинаю освещать одну из интереснейших тем это тема компьютерного, еще говорят, схемотехнического моделирования схем различных электронных устройств .

Вообще термин моделирование электронных схем имеет много синонимов, это и эмуляция электронных схем, симуляция электронных схем и т. д. Я буду придерживаться термина «компьютерное моделирование» или моделирование схем на компьютере, не суть важно.

Итак, поехали.

На сегодняшний день существуем множество компьютерных программ, которые предназначены в первую очередь для разработки различных электронных устройств и в таких программах существует одна из важных функций – эмуляция электрических схем.

Перечислю только самые известные из них:

LTSpice и множестов других программ.

Сегодня я хочу вас познакомить с программой компании National Instruments – это эмулятор схем Multisim.

Бесплатную программу Multisim с ограничениями на 50 элементов в схеме можно скачать с сайта производителя по ссылке https://lumen.ni.com/nicif/confirmation.xhtml, там же на сайте можно найти версию для учебных заведений, более расширенную по сравнению с предидущей, но тоже имеющую свои ограничения https://lumen.ni.com/nicif/us/academicevalmultisim/content.xhtml

Начнем с изучения интерфейса программы.

Основные функциональные панели программы показаны на следующем рисунке.

Отдельный интерес представляет панель компонентов. С помощью панели компонентов осуществляется доступ к базе компонентов. При нажатии на любую из выбранных пиктограмм компонентов схем открывается окно Выбор компонента . В левой части окна осуществляется выбор необходимого компонента.

Вся база данных компонентов разделена на разделы (пассивные элементы, диоды, транзисторы, микросхемы и т. д.), а разделы на семейства (например, для диодов – это сами диоды, стабилитроны, светодиоды, тиристоры и т. д.). Надеюсь идея понятна.

Так же в окне выбора компонента можно посмотреть обозначение выбранного компонента, описание его функции, выбрать тип корпуса.

Моделирование схем в программе Multisim.

Теперь переходим непосредственно к практике. Давайте соберем простую схему в программе Multisim и заставим ее работать!

Я скачал из интернета схему мультивибратора на двух транзисторах, где в качестве нагрузки используются светодиоды.

Можем воспользоваться измерительными приборами, например виртуальным осциллографом и посмотреть сигналы в различных точках схемы.

Мы убедились, что схема работает, на этом знакомство с программой Multisim заканчиваю, если вас заинтересовала тема моделирования схем, пишите свои вопросы в комментариях, отвечу с удовольствием.

Ну и на последок, по традиции представляю вам подробное видео по моделированию схем в программе Multisim.

Если вы еще не подписались на новые выпуски интернет журнала «Электрон», то заполняйте форму внизу страницы и получайте новые выпуски на электронную почту в формате PDF.

В связи с широким развитием вычислительных устройств задача расчета и моделирования электрических схем заметно упростилась. Наиболее подходящим программным обеспечением для данных целей является продукт National instruments – Multisim (Electronic Workbench).

В данной статье рассмотрим простейшие примеры моделирования электрических схем с помощью Multisim.

Итак, у нас имеется Multisim 12 это последняя версия на момент написания статьи. Откроем программу и создадим новый файл с помощью сочетания Ctrl+N.



После создания файла перед нами открывается рабочая зона. По сути, рабочая зона Multisim – это поле для собирания требуемой схемы из имеющихся элементов, а их выбор, поверьте велик.

Кстати вкратце о элементах. Все группы по умолчанию расположены на верхней панели. При нажатии на какую либо группу, перед вами открывается контекстное окно, в котором вы выбираете интересующий вас элемент.


По умолчанию используется база элементов – Master Database. Компоненты содержащиеся в ней разделены на группы.

Перечислим вкратце содержание групп.

Sources содержит источники питания, заземление.

Basic – резисторы, конденсаторы, катушки индуктивности и т.д.

Diodes – содержит различные виды диодов.

Transistors - содержит различные виды транзисторов.

Analog - содержит все виды усилителей: операционные, дифференциальные, инвертирующие и т.д.

TTL - содержит элементы транзисторно-транзисторная логики

CMOS - содержит элементы КМОП-логики.

MCU Module – управляющий модуль многопунктовой связи.

Advanced_Peripherals – подключаемые внешние устройства.

Misc Digital - различные цифровые устройства.

Mixed - комбинированные компоненты

Indicators - содержит измерительные приборы и др.

С панелью моделирования тоже ничего сложного, как на любом воспроизводящем устройстве изображены кнопки пуска, паузы, останова. Остальные кнопки нужны для моделирования в пошаговом режиме.

На панели приборов расположены различные измерительные приборы (сверху вниз) - мультиметр , функциональный генератор, ваттметр, осциллограф, плоттер Боде, частотомер, генератор слов, логический конвертер, логический анализатор, анализатор искажений, настольный мультиметр.

Итак, бегло осмотрев функционал программы, перейдём к практике.

Пример 1

Для начала соберём простенькую схему, для этого нам понадобиться источник постоянного тока (dc-power) и пара резисторов (resistor).

Допустим нам необходимо определить ток в неразветвленной части, напряжение на первом резисторе и мощность на втором резисторе. Для этих целей нам понадобятся два мультиметра и ваттметр. Первый мультиметр переключим в режим амперметра, второй – вольтметра, оба на постоянное напряжение. Токовую обмотку ваттметра подключим во вторую ветвь последовательно, обмотку напряжения параллельно второму резистору.

Есть одна особенность моделирования в Multisim – на схеме обязательно должно присутствовать заземление, поэтому один полюс источника мы заземлим.

После того как схема собрана нажимаем на пуск моделирования и смотрим показания приборов.


Проверим правильность показаний (на всякий случай=)) по закону Ома


Показания приборов оказались верными, переходим к следующему примеру.

Пример 2

Соберём усилитель на биполярном транзисторе по схеме с общим эмиттером. В качестве источника входного сигнала используем функциональный генератор (function generator). В настройках ФГ выберем синусоидальный сигнал амплитудой 0,1 В, частотой 18,2 кГц.

С помощью осциллографа (oscilloscope) снимем осциллограммы входного и выходного сигналов, для этого нам понадобится задействовать оба канала.

Чтобы проверить правильность показаний осциллографа поставим на вход и на выход по мультиметру, переключив их предварительно в режим вольтметра.

Запускаем схему и открываем двойным кликом каждый прибор.


Показания вольтметров совпадают с показаниями осциллографа, если знать что вольтметр показывает действующее значение напряжения, для получения которого необходимо разделить амплитудное значение на корень из двух.

Пример 3

С помощью логических элементов 2 И-НЕ соберём мультивибратор, создающий прямоугольные импульсы требуемой частоты. Чтобы измерить частоту импульсов воспользуемся частотомером (frequency counter), а проверим его показания с помощью осциллографа.


Итак, допустим, мы задались частотой 5 кГц, подобрали опытным путём требуемые значения конденсатора и резисторов. Запускаем схему и проверяем, что частотомер показывает приблизительно 5 кГц. На осциллограмме отмечаем период импульса, который в нашем случае равен 199,8 мкс. Тогда частота равна

Мы рассмотрели только малую часть всех возможных функций программы. В принципе, ПО Multisim будет полезен как студентам, для решения задач по электротехнике и электронике, так и преподавателям для научной деятельности и т.д.

Надеемся данная статья оказалась для вас полезной. Спасибо за внимание!

В связи с широким развитием вычислительных устройств задача расчета и моделирования электрических схем заметно упростилась. Наиболее подходящим программным обеспечением для данных целей является продукт National instruments – Multisim (Electronic Workbench).

В данной статье рассмотрим простейшие примеры моделирования электрических схем с помощью Multisim.

Итак, у нас имеется Multisim 12 это последняя версия на момент написания статьи. Откроем программу и создадим новый файл с помощью сочетания Ctrl+N.



После создания файла перед нами открывается рабочая зона. По сути, рабочая зона Multisim – это поле для собирания требуемой схемы из имеющихся элементов, а их выбор, поверьте велик.

Кстати вкратце о элементах. Все группы по умолчанию расположены на верхней панели. При нажатии на какую либо группу, перед вами открывается контекстное окно, в котором вы выбираете интересующий вас элемент.


По умолчанию используется база элементов – Master Database. Компоненты содержащиеся в ней разделены на группы.

Перечислим вкратце содержание групп.

Sources содержит источники питания, заземление.

Basic – резисторы, конденсаторы, катушки индуктивности и т.д.

Diodes – содержит различные виды диодов.

Transistors - содержит различные виды транзисторов.

Analog - содержит все виды усилителей: операционные, дифференциальные, инвертирующие и т.д.

TTL - содержит элементы транзисторно-транзисторная логики

CMOS - содержит элементы КМОП-логики.

MCU Module – управляющий модуль многопунктовой связи.

Advanced_Peripherals – подключаемые внешние устройства.

Misc Digital - различные цифровые устройства.

Mixed - комбинированные компоненты

Indicators - содержит измерительные приборы и др.

С панелью моделирования тоже ничего сложного, как на любом воспроизводящем устройстве изображены кнопки пуска, паузы, останова. Остальные кнопки нужны для моделирования в пошаговом режиме.

На панели приборов расположены различные измерительные приборы (сверху вниз) - мультиметр , функциональный генератор, ваттметр, осциллограф, плоттер Боде, частотомер, генератор слов, логический конвертер, логический анализатор, анализатор искажений, настольный мультиметр.

Итак, бегло осмотрев функционал программы, перейдём к практике.

Пример 1

Для начала соберём простенькую схему, для этого нам понадобиться источник постоянного тока (dc-power) и пара резисторов (resistor).

Допустим нам необходимо определить ток в неразветвленной части, напряжение на первом резисторе и мощность на втором резисторе. Для этих целей нам понадобятся два мультиметра и ваттметр. Первый мультиметр переключим в режим амперметра, второй – вольтметра, оба на постоянное напряжение. Токовую обмотку ваттметра подключим во вторую ветвь последовательно, обмотку напряжения параллельно второму резистору.

Есть одна особенность моделирования в Multisim – на схеме обязательно должно присутствовать заземление, поэтому один полюс источника мы заземлим.

После того как схема собрана нажимаем на пуск моделирования и смотрим показания приборов.


Проверим правильность показаний (на всякий случай=)) по закону Ома


Показания приборов оказались верными, переходим к следующему примеру.

Пример 2

Соберём усилитель на биполярном транзисторе по схеме с общим эмиттером. В качестве источника входного сигнала используем функциональный генератор (function generator). В настройках ФГ выберем синусоидальный сигнал амплитудой 0,1 В, частотой 18,2 кГц.

С помощью осциллографа (oscilloscope) снимем осциллограммы входного и выходного сигналов, для этого нам понадобится задействовать оба канала.

Чтобы проверить правильность показаний осциллографа поставим на вход и на выход по мультиметру, переключив их предварительно в режим вольтметра.

Запускаем схему и открываем двойным кликом каждый прибор.


Показания вольтметров совпадают с показаниями осциллографа, если знать что вольтметр показывает действующее значение напряжения, для получения которого необходимо разделить амплитудное значение на корень из двух.

Пример 3

С помощью логических элементов 2 И-НЕ соберём мультивибратор, создающий прямоугольные импульсы требуемой частоты. Чтобы измерить частоту импульсов воспользуемся частотомером (frequency counter), а проверим его показания с помощью осциллографа.


Итак, допустим, мы задались частотой 5 кГц, подобрали опытным путём требуемые значения конденсатора и резисторов. Запускаем схему и проверяем, что частотомер показывает приблизительно 5 кГц. На осциллограмме отмечаем период импульса, который в нашем случае равен 199,8 мкс. Тогда частота равна

Мы рассмотрели только малую часть всех возможных функций программы. В принципе, ПО Multisim будет полезен как студентам, для решения задач по электротехнике и электронике, так и преподавателям для научной деятельности и т.д.

Надеемся данная статья оказалась для вас полезной. Спасибо за внимание!