Методы повышения точности глонасс. Точность определения координат GPS. Влияние отраженного сигнала на точность GPS-навигации

Точность измерений с помощью ГЛОНАСС/GPS зависит от конструкции и класса приёмника, числа и расположения спутников (в реальном времени), состояния ионосферы и атмосферы Земли (сильной облачности и т.д.), наличия помех и других факторов.

"Бытовые" GPS-приборы, для "гражданских" пользователей, имеют погрешность измерения в диапазоне от ±3-5м до ±50м и больше (в среднем, реальная точность, при минимальной помехе, если новые модели, составляет ±5-15 метров в плане). Максимально возможная точность достигает +/- 2-3 метра на горизонтали. По высоте - от ±10-50м до ±100-150 метров. Высотомер будет точнее, если проводить калибровку цифрового барометра по ближайшей точке с известной точной высотой, (из обычного атласа, например) на ровном рельефе местности или по известному атмосферному давлению (если оно не слишком быстро меняется, при перемене погоды).

Измерители высокой точности "геодезического класса" - точнее на два-три порядка (до сантиметра, в плане и по высоте). Реальная точность измерений обусловлена различными факторами, например - удаленностью от ближайшей базовой (корректирующей) станции в зоне обслуживания системы, кратностью (числом повторных измерений / накоплений на точке), соответствующим контролем качества работ, уровнем подготовки и практическим опытом специалиста. Такое высокоточное оборудование - может применяться только специализированными организациями, специальными службами и военными.

Для повышения точности навигации рекомендуется использовать многосистемный Glanas / GPS-приёмник - на открытом пространстве (нет рядом зданий или нависающих деревьев) с достаточно ровным рельефом местности, и подключать дополнительную внешнюю антенну. Для целей маркетинга, таким аппаратам приписывают "двойную надёжность и точность" (ссылаясь на, одновременно используемые, две спутниковые системы, Глонасс и Джипиэс), но реальное фактическое, улучшение параметров (повышение точности определения координат) может составлять величины - лишь до нескольких десятков процентов. Возможно только заметное сокращение времени горячего-тёплого старта и продолжительности измерений.

Качество измерений джипиэс ухудшается, если спутники располагаются на небе плотным пучком или на одной линии и "далеко" - у линии горизонта (всё это называется "плохая геометрия") и есть помехи сигналу (закрывающие, отражающие сигнал высотные здания, деревья, крутые горы поблизости). На дневной стороне Земли (освещённой, в данный момент, Солнцем) - после прохождения через ионосферную плазму, радиосигналы ослабляются и искажаются на порядок сильнее, чем на ночной. Во время геомагнитной бури , после мощных солнечных вспышек - возможны перебои и длительные перерывы в работе спутникового навигационного оборудования.

Фактическая точность джипиэски зависит от типа GPS-приемника и особенностей сбора и обработки данных. Чем больше каналов (их должно быть не меньше 8) в навигаторе, тем точнее и быстрее определяются верные параметры. При получении "вспомогательных данных A-GPS сервера местоположения" по сети Интернет (путём пакетной передачи данных, в телефонах и смартфонах) - увеличивается скорость определения координат и расположения на карте.

WAAS (Wide Area Augmentation System, на американском континенте) и EGNOS (European Geostationary Navigation Overlay Services, в Европе) - дифференциальные подсистемы, передающие через геостационарные (на высоте от 36 тыс.км в нижних широтах до 40 тысяч километров над средними и высокими широтами) спутники корректирующую информацию на G P S-приёмники (вводятся поправки). Они могут улучшить качество позиционирования ровера (полевого, передвижного приемника), если поблизости располагаются и работают наземные базовые корректирующие станции (стационарные приёмники опорного сигнала, уже имеющие высокоточную координатную привязку). При этом полевой и базовый приёмник должны одновременно отслеживать одноимённые спутники.

Для повышения скорости измерений рекомендуется применять многоканальный (8-и канальный и более), многосистемный (Glonas / Gps) приёмник с внешней антеной. Должны быть видимы, как минимум, три спутника ГПС и два ГЛОНАСС. Чем их больше, тем лучше результат. Необходима, так же, хорошая видимость небосвода (открытый горизонт).

Быстрый, "горячий" (длительностью в первые секунды) или "тёплый старт" (полминуты или минута, по времени) приёмного устройства - возможен, если он содержит актуальный, свежий альманах. В случае, когда навигатор долго не использовался, приёмник вынужден получать полный альманах и, при его включении, будет производиться холодный старт (если прибор с поддержкой AGPS, тогда быстрее - до нескольких секунд).

Для определения только горизонтальных координат (широта / долгота) может быть достаточно сигналов трёх спутников. Для получения трёхмерных (с высотой) координат - нужны, как минимум, четыре сп-ка.

Статья о системах ГЛОНАСС и GPS: характеристики спутниковых систем, их особенности и сравнительный анализ. В конце статьи - видео о принциах работы GPS и ГЛОНАСС.

Сейчас сферы влияния поделены между российской ГЛОНАСС, американской GPS (Global Positioning System) и понемногу набирающей обороты китайской BeiDou. Выбор системы для собственного автомобиля может обуславливаться патриотическими мотивами, а может основываться на грамотном взвешивании преимуществ и недостатков этих разработок.

Основы спутниковой связи


Предназначение каждой спутниковой системы – определение точного местонахождения какого угодно объекта. В контексте автомобиля эта задача осуществляется посредством специального устройства, помогающего установить координаты на местности, известного как навигатор.

Спутники, взаимодействующие с конкретной навигационной системой, отправляют ей персональные сигналы, отличные друг от друга. Для четкого определения пространственных координат навигатору достаточно информации от 4 спутников. Таким образом, это не простой автомобильный гаджет, а один из элементов сложного механизма космического позиционирования.

При движении автомобиля координаты непрерывно изменяются. Поэтому навигационная система устроена так, чтобы через некие равные промежутки времени обновлять получаемые данные и заново пересчитывать расстояние.


Преимущество современных систем в том, что они обладают способностью запоминания схемы расположения спутников даже в выключенном состоянии. Это значительно повышает эффективность прибора, когда нет необходимости каждый раз заново отыскивать орбиту спутника. Для автомобилистов, регулярно обращающихся к навигатору, разработчики предусмотрели функцию «горячего старта» - максимально быстрой связи устройства со спутником. При редком использовании навигатора старт будет «холодным», то есть, в этом случае соединение со спутником будет более длительным, занимающим от 10 до 20 минут.

Создание систем


Хотя первым спутником Земли была советская разработка, вначале родилась именно американская GPS . Ученые обратили внимание на перемены в спутниковых сигналах, зависящие от его перемещения по орбите. Тогда они задумались над методикой расчета не только координат самого спутника, но и привязанных к нему земных объектов.

В 1964 году заработала исключительно военная навигационная система под названием TRANZIT, ставшая первой в мире разработкой такого уровня. Она способствовала запуску ракет с подводных лодок, но точность расположения объекта рассчитывала только на расстоянии 50 метров. К тому же объект этот должен был оставаться абсолютно неподвижным.

Стало понятно, что первый и на тот момент единственный в мире навигатор не справляется с задачей постоянного определения координат. Это происходило от того, что проходя по низкой орбите, спутник мог подавать сигналы на Землю только в течение часа.

Следующая, модернизированная версия появилась спустя 3 года вместе с новым спутником Тиматионом-1 и его собратом Тиматионом-2. Совместно они поднялись на более высокую орбиту и объединились в единую систему, названую «Навстар». Начинала она так же, как военная разработка, но затем было принято решение сделать ее общедоступной для нужд гражданского населения.

Эта система функционирует до сих пор, насчитывая в своем арсенале 32 спутника, обеспечивающих полное покрытие Земли. Еще 8 аппаратов имеются в резерве на некий непредвиденный случай. Двигаясь на существенном расстоянии от планеты по нескольким орбитам, спутники завершают оборот почти за сутки.

Над отечественной системой ГЛОНАСС начали работать еще во времена Союза - мощной державы, обладающей выдающимися научными умами. Выведение на орбиту искусственного спутника запустило проектировочные работы системы позиционирования.


Первый советский спутник 1967 года рождения должен был стать единственным, достаточным для расчета координат. Но скоро в космосе появилась целая оборудованная радиопередатчиками система, известная населению как Цикада, военные называли ее Циклоном. Ее задачей стало определение терпящих бедствие объектов, чем она и занималась вплоть до появления ГЛОНАССа в 1982 году.

Советский Союз был разрушен, страна находилась в бедственном положении и не могла изыскать резервы для доведения до ума высокотехнологичной системы. Вся система включала в себя 24 спутника, но из-за финансовых трудностей почти половина из них не функционировала. Поэтому в то время, в 90-х годах, ГЛОНАСС даже близко не могла конкурировать с GPS.

На сегодняшний день российские разработчики намерены догнать и обогнать американских коллег, что уже подтверждает более быстрое обращение вокруг Земли наших спутников. Пусть исторически российская спутниковая система ощутимо отставала от американской, из года в год этот отрыв сокращается.

Преимущества и недостатки


На каком уровне сейчас обе системы? Какую из них предпочесть рядовому обывателю для своих житейских задач?

По большому счету, многим гражданам безразлично, какую именно спутниковую навигацию использует его техника. Они обе доступны без ограничений и взимания платы всему гражданскому населению, в том числе для использования в автомобиле. Если смотреть с технической точки зрения, то шведская спутниковая компания официально заявила о достоинствах ГЛОНАСС, намного качественнее работающей в северных широтах.

Спутники GPS практически не появляются севернее 55-й параллели, а в южном полушарии, соответственно, южнее. Тогда как при угле наклона в 65 градусов и высоте нахождения в 19,4 тыс.км спутники ГЛОНАСС поставляют отличные, стабильные сигналы в Москву, Норвегию и Швецию, что так оценили зарубежные специалисты.

Хотя обе системы имеют большое количество спутников во всех орбитальных плоскостях, другие эксперты все же отдают пальму первенства GPS. Даже при активной программе усовершенствования российской системы на данный момент американцы имеют 27 спутников против 24 российских, что дает большую четкость их сигналам.

Достоверность сигналов ГЛОНАСС составляет 2,8 м по сравнению с 1,8 м у GPS. Однако эта цифра достаточно усреднена, потому что спутники могут выстроиться на орбите таким образом, что показатель погрешности возрастет в несколько раз. Причем такая ситуация может постичь обе спутниковые системы.

По этой причине производители стараются оснастить свои устройства двухсистемной навигацией, принимающей сигналы и GPS, и ГЛОНАСС.

Немаловажную роль играет качество наземного оборудования, получающего и расшифровывающего получаемые данные.


Если говорить о выявленных недостатках обеих навигационных систем, их можно распределить следующим образом:

ГЛОНАСС:

  • смена небесных координат (эфемерид) приводит к неточности определения координат, достигающей 30 метров;
  • достаточно частое, хотя и кратковременное прерывание сигнала;
  • ощутимое влияние особенностей рельефа на четкость получаемых данных.
GPS:
  • получение ошибочного сигнала вследствие многолучевой интерференции и атмосферной нестабильности;
  • существенное отличие гражданской версии системы, имеющей слишком ограниченные возможности по сравнению с военной разработкой.

Двухсистемность


В общей сложности на орбите постоянно крутится более пяти десятков спутников обеих мировых держав. Как уже было сказано, для получения достоверных координат достаточно хорошего «обзора» 4 спутников. На ровном пространстве, в степи или в поле, любой приемник сумеет зафиксировать одновременно до десятка сигналов, тогда как в лесу или горной местности связь стремительно исчезает.

Таким образом, цель разработчиков состоит в том, чтобы каждое принимающее устройство было способно связываться с максимальным количеством спутников. Это снова возвращает к идее совмещения ГЛОНАСС и GPS, что уже практикуют в Америке для служб спасения. Как бы ни складывались отношения государств, человеческая жизнь превыше всего, а двухсистемный чип с большей скоростью и четкостью определит местоположение попавшего в беду человека.

Такой синтез избавит и автомобилистов от неспособности сориентироваться в незнакомой местности из-за того, что навигатор слишком медленно налаживает соединение и слишком долго обрабатывает информацию. Причиной тому служит потеря спутника из-за банальных помех: высокого здания, эстакады или даже крупногабаритной фуры по соседству. Но если автонавигатор будет оснащен двухсистемным чипом, вероятность его «зависания» значительно уменьшится.

Когда подобная практика станет повсеместной, навигатору будет безразлична страна происхождения системы, ведь он сможет одновременно отслеживать до 40 спутников, выдавая фантастически точное определение местонахождения.

Видео о принципах работы GPS и ГЛОНАСС:

Система ГЛОНАСС является крупнейшим навигационным комплексом, который позволяет отслеживать местоположение различных объектов. Проект, запущенный в 1982 г., по сей день активно развивается и совершенствуется. Причем работа ведется как над техническим обеспечением ГЛОНАСС, так и над инфраструктурой, позволяющей использовать систему все большему количеству людей. Так, если первые годы существования комплекса навигация посредством спутников использовалась преимущественно в решении военных задач, то сегодня ГЛОНАСС - это технологичный инструмент позиционирования, который стал обязательным в жизнедеятельности миллионов гражданских пользователей.

Глобальные системы спутниковой навигации

Ввиду технологической сложности глобального спутникового позиционирования на сегодняшний день полностью соответствовать этому названию могут лишь две системы - ГЛОНАСС и GPS. Первая является российской, а вторая - плодом американских разработчиков. С технической точки зрения ГЛОНАСС - это комплекс специализированного аппаратного оснащения, расположенного и на орбите, и на земле.

Для связи со спутниками используются специальные датчики и приемники, считывающие сигналы и формирующие на их основе данные о местоположении. Для расчета временных параметров применяются специальные Они служат для определения положения объекта с учетом трансляции и обработки радиоволн. Сокращение погрешностей позволяет обеспечивать более достоверный расчет параметров позиционирования.

Функции спутниковой навигации

В спектр задач глобальных систем спутниковой навигации входит определение точного местоположения наземных объектов. Помимо географического положения, глобальные навигационные спутниковые системы позволяют учитывать время, путь следования, скорость и другие параметры. Реализуются эти задачи посредством спутников, находящихся в разных точках над земной поверхностью.

Применение глобальной навигации используется не только в транспортной отрасли. Спутники помогают в поисково-спасательных операциях, выполнении геодезических и строительных работ, а также без них не обходится координация и обслуживание других космических станций и аппаратов. Военная отрасль также не остается без поддержки системы подобных целей обеспечивает защищенный сигнал, предназначенный специально для авторизованной аппаратуры Министерства обороны.

Система ГЛОНАСС

Полноценную работу система начала лишь в 2010 г., хотя попытки ввести комплекс в активную работу предпринимались с 1995 г. Во многом проблемы были связаны с низкой долговечностью используемых спутников.

На данный момент ГЛОНАСС - это 24 спутника, которые работают в разных точках орбиты. В целом навигационную инфраструктуру можно представить тремя компонентами: управляющий комплекс (обеспечивает контроль группировки на орбите), а также навигационные технические средства пользователей.

24 спутника, каждый из которых имеет свою постоянную высоту, распределены на несколько категорий. На каждое полушарие приходится по 12 спутников. Посредством спутниковых орбит над поверхностью земли формируется сетка, за счет сигналов которой определяются точные координаты. Помимо этого, спутниковый ГЛОНАСС имеет и несколько резервных объектов. Они также находятся каждый на своей орбите и не бездействуют. В круг их задач входит расширение покрытия над конкретным регионом и замена выходящих из строя спутников.

Система GPS

Американский аналог ГЛОНАСС - это система GPS, которая начинала свою работу также в 1980-е, но только с 2000 года точность определения координат сделал возможным ее широкое распространение среди потребителей. На сегодняшний день спутники gps гарантируют точность до 2-3 м. Задержка в развитии возможностей навигации долгое время была обусловлена ограничениями позиционирования искусственного характера. Тем не менее их снятие позволило с максимальной точностью определять координаты. Даже при условии синхронизации с миниатюрными приемниками достигается результат, соответствующий ГЛОНАСС.

Отличия между ГЛОНАСС и GPS

Между навигационными системами выделяется несколько отличий. В частности, есть разница в характере расстановки и движении спутников на орбитах. В комплексе ГЛОНАСС они движутся по трем плоскостям (по восемь спутников на каждую), а в системе GPS предусматривается работа в шести плоскостях (примерно по четыре на плоскость). Таким образом, российская система обеспечивает более широкий охват наземной территории, что отражается и в более высокой точности. Однако на практике краткосрочная «жизнь» отечественных спутников не позволяет использовать весь потенциал системы ГЛОНАСС. GPS, в свою очередь, поддерживает высокую точность за счет избыточного количества спутников. Тем не менее российский комплекс регулярно вводит новые спутники, как для целевого использования так и в качестве резервной поддержки.

Также применяются разные методы кодирования сигнала - американцы используют код CDMA, а в ГЛОНАСС - FDMA. При расчете приемниками данных для позиционирования российская спутниковая система предусматривает более сложную модель. В результате для использования ГЛОНАСС необходимо высокое потребление энергии, что отражается в габаритах устройств.

Что позволяют возможности ГЛОНАСС?

Среди базовых задач системы — определение координат объекта, способного взаимодействовать ГЛОНАСС. GPS в этом смысле выполняет схожие задачи. В частности, рассчитываются параметры движения наземных, морских и воздушных объектов. За несколько секунд транспортное средство, обеспеченное соответствующим навигатором может вычислить характеристики собственного движения.

При этом использование глобальной навигации уже стало обязательным для отдельных категорий транспорта. Если в 2000-х распространение спутникового позиционирования относилось к контролю определенных стратегических объектов, то сегодня приемниками снабжаются морские и авиационные суда, общественный транспорт и т. д. В скором будущем не исключено и обязательное обеспечение ГЛОНАСС-навигаторами всех частных автомобилей.

Какие устройства работают с ГЛОНАСС

Система способна обеспечивать непрерывное глобальное обслуживание всех без исключения категорий потребителей независимо от климатических, территориальных и временных условий. Как и услуги системы GPS, ГЛОНАСС навигатор предоставляется бесплатно и в любой точке планеты.

Среди устройств, которые имеют возможность приема спутниковых сигналов, значатся не только бортовые навигационные средства и GPS-приемники, но также и сотовые телефоны. Данные о местоположении, направлении и скорости движения отправляются на специальный сервер по сетям GSM-операторов. В использовании возможностей спутниковой навигации помогает специальная программа ГЛОНАСС и различные приложения, которые занимаются обработкой карт.

Комбинированные приемники

Территориальное расширение спутниковой навигации обусловило сращивание двух систем с точки зрения потребителя. На практике устройства ГЛОНАСС нередко дополняются GPS и наоборот, что повышает точность позиционирования и временных параметров. Технически это реализуется посредством двух датчиков, интегрированных в один навигатор. На основе этой идеи и производятся совмещенные приемники, работающие одновременно с системами ГЛОНАСС, GPS и сопутствующей аппаратурой.

Кроме повышения точности определения такой симбиоз делает возможным отслеживание местоположения, когда спутники одной из систем не улавливаются. Минимальное количество орбитальных объектов, «видимость» которых требуется для работы навигатора, составляет три единицы. Так, если, например, программа ГЛОНАСС становится недоступной, то на помощь придут спутники gps.

Другие системы спутниковой навигации

Разработкой проектов, схожих по масштабам с ГЛОНАСС и GPS, занимается Европейский союз, а также Индия и Китай. планирует реализовать систему Galileo, состоящую из 30 спутников, что позволит добиться непревзойденной точности. В Индии планируется запуск системы IRNSS, работающей посредством семи спутников. Навигационный комплекс ориентируется на внутригосударственное использование. Система Compass от китайских разработчиков должна состоять из двух сегментов. Первый будет включать 5 спутников, а второй - 30. Соответственно, авторы проекта предполагают два формата обслуживания.

Современные технологии спутниковой навигации обеспечивают определение местоположения с точностью порядка 10-15 метров. В большинстве случаев этого достаточно, однако, в некоторых случаях требуется большее: скажем, автономный дрон, достаточно быстро перемещающийся над земной поверхностью, будет чувствовать себя неуютно в облаке из координат с метровыми погрешностями.

Для уточнения спутниковых данных используются дифференциальные системы и RTK (real-time kinematics) технологии, но до последнего времени подобного рода устройства были дорогими и громоздкими. Последние достижения цифровой техники в лице микрокомпьютера Intel Edison помогли решить эту проблему. Итак, встречайте: Reach – первый компактный высокоточный приемник GPS, очень доступный по цене, и, к тому же, разработанный в России.

Для начала поговорим немного о дифференциальных технологиях, которые позволяют Reach добиться столь высоких результатов. Они хорошо известны и достаточно широко внедрены. Дифференциальные навигационные системы (ДНСС) улучшают точность определения местоположения и скорости подвижных пользователей за счет предоставления данных измерений или корректирующей информации от одной или нескольких базовых станций.

Координаты каждой базовой станции известны с высокой точностью, так что данные измерений станцией служат для калибровки данных расположенных рядом приемников. Приемник может вычислить теоретическое расстояние и время распространения сигнала между собой и каждым спутником. Когда эти теоретические значения сравниваются с данными наблюдений, то различия представляют собой ошибки в принимаемых сигналах. Корректирующая информация (данные RTCM) получается из этих различий.


Точность определения координат с помощью Reach. Обратите внимание на масштаб.

Корректирующая информация может получаться устройством Reach из двух источников. Во-первых от общедоступной сети базовых станций через интернет по протоколу NTRIP (Networked Transport of RTCM via Internet Protocol), реализующего идею, описанную выше, применительно к глобальной компьютерной сети. Во-вторых, с помощью второго Reach, занимающего стационарную позицию вблизи первого и являющегося, таким образом, базовой станцией в терминах ДНСС. Второй вариант предпочтительнее (точность ДНСС сильно падает с увеличением расстояния между приемником и БС) – не случайно в рамках краудфайндинговой кампании на сайте Indiegogo создатели Reach первой позицией предлагают выкупить именно набор из двух устройств.

Спецификации устройства приведены в таблице ниже. Как видим, аппаратно он состоит из 3 частей: компьютера Intel Edison, на котором запущена ОС Linux и RTK софт RTKLIB; GPS-приемника U-blox NEO-M8T и антенны Tallysman TW4721. Обратите внимание, что приемник поддерживает все существующие спутниковые системы: GPS, ГЛОНАСС, Beidou и QZSS. Вся эта совокупность программных и аппаратных компонент обеспечивает впечатляющую точность определения координат: до 2 см!
Кому может пригодиться подобное устройство? Как уже говорилось выше, создателям различной мобильной робототехники, автономной и не очень; причем, учитывая его низкую стоимость (предзаказ $545 за двойной набор и $285 за одинарный) не только профессиональным, но и энтузиастам. Далее, составителям различного рода карт, опять-таки, в том числе и любителям. Ну и просто занудам, желающим знать свое местоположение с точностью до сантиметра.

Создатели Reach, компания Emlid, удачно выступили на сайте indiegogo: меньше чем за месяц собрана почти двойная запрошенная сумма. Значит, проект непременно будет реализован. У вас еще есть время, чтобы сделать предзаказ и оказаться в числе первых, кто получит принципиально новое навигационное устройство. Рассылка товара запланирована на июль.

Информация о разнице между показаниями штатных одометров и спутниковых навигаторов.

Наличие расхождений между показаниями штатного одометра и данных GPS/ГЛОНАСС - одометра могут служить поводом для возникновения конфликтных ситуаций. Настоящая статья призвана прояснить основные причины возникновения подобных расхождений в показаниях приборов.

Одометр — прибор для измерения количества оборотов колеса. При помощи него может быть измерен пройденный путь транспортным средством. Одометр преобразует пройденный путь в показания на индикаторе. Обычно одометр состоит из счётчика с индикатором и датчика, связанного с вращением колеса. Видимая часть одометра — его индикатор. Механический индикатор содержит ряд колёсиков (барабанов) с цифрами на приборной доске автомобиля. Каждое такое колёсико разделено на десять секторов, на каждом секторе написано по цифре. По мере увеличения пройденного пути транспортным средством колёсики вращаются, образуя число, обозначающее пройденную дистанцию.

Счётчик может быть механическим, электромеханический или электронным, в т.ч. основанным на бортовой электронно-вычислительной техники. Для каждого из вышеперечисленных видов прибора установлены свои параметры и погрешности.

Прежде всего, отметим, что бортовые одометры всех видов не относятся к классу точных приборов. Для каждого вида данных приборов установлены допустимые погрешности. Здесь необходимо сделать важные замечания: во-первых, данные погрешности установлены только для самих приборов, все конструктивные изменения, а так же физический износ некоторых узлов автомобиля в эту погрешность не включены, во-вторых, по техническим требованиям спидометры не могут занижать показания, поэтому и одометр конструктивно связанный со спидометр так же как правило, дает незначительно, но завышенные показания.

Спортивный одометр без какой-либо калибровки завышает скорость и расстояния на 3.5 %, что и требуется согласно международной конвенции о дорожном движении и ГОСТ 12936-82 , ГОСТ 1578-76, ГОСТ 8.262-77. На обычные одометры таких стандартов не существует (они никогда не разрабатывались, в силу отсутствия требований по точности данных приборов).

Погрешность штатного спидометра - величина, рассчитанная опытным путем на заводе изготовителе автомобиля. О размерах погрешностей разных типов одометров написано ниже.

Механический одометр имеет собственную погрешность до 5%. В зависимости от условий эксплуатации транспортного средства, износа узлов и агрегатов, использования нештатных запчастей суммарная погрешность прибора может достигать 12%-15%.

Электромеханические одометры - основаны на показаниях электронного измерителя числа импульсов от датчика скорости, т.е. показания прибора пропорциональны числу импульсов за единицу времени. Эти приборы несколько точней механических, но все же, погрешность 5-7% у них случается, ведь они избавились лишь от слабых мест самой механики (люфтов, капризов троса, катушки, возвратной пружинки т.п.).

Полностью электронные одометры совершенней электромеханических, за счет улучшенного механизма контроля вращения ведущего колеса. В тоже время сам принцип контроля пройденного пути остается неизменным, и даже точная электроника находится в зависимости от состояния ходовой части автомобиля. Суммарная погрешность данных приборов редко превышает 5% в случае если проводится дополнительная калибровка на тестовом участке пути (на заводе-изготовителе эта процедура не происходит).

Реально, на точность измерения пройденного автомобилем расстояния любым одометром влияет большое число внешних факторов:

Высота колеса. Разница в высоте протектора в 1 см, например, даст на 60 км пробега автомобиля разницу в пробеге в 1,177 км. (несложно проверить, вооружившись калькулятором и формулами геометрии из курса средней школы - примем диаметр одного колеса в 1 м, второго - 1.02 м. Первое совершит 19.108 оборотов, второе - 18.733. Каждый оборот - 3.14 м, разница - 1177 м). И эту разницу мы получаем только при одном сантиметре! Поэтому одометр на автомобиле со стёртым протектором покажет большее значение по сравнению с периодом, когда автомобиль ездил на новых шинах. Ещё важно знать на какой тип колёс рассчитан одометр, если поставить другой тип колёс по диаметру то будут совсем другие данные по скорости и пройденному пути относительно реальных, так как и спидометр и одометр считают количество оборотов колеса и калькулируют с данными о диаметре колеса заложенными заводом производителем.

Колеса отличаются по диаметру: 315/70 и 315/80, например, дадут сразу разницу в диаметре в 6.3 см. со всеми вытекающими последствиями и погрешностями.

Загрузка авто - При полной или чрезмерной загрузке автомобиля, шина проминается по-разному, отсюда изменяется диаметр колеса и соответственно имеем качество погрешности описанное выше.
Давление в шинах - шина проминается по разному при штатном и нештатном давлении.

Скольжение колес по дороге - рассуждая логически, при пробуксовках, скольжениях, или же наоборот -торможении на льду, автомобиль или находится на месте при вращении колес, либо наоборот - движется при стопоре колес.

Система мониторинга транспорта на основе GPS/ГЛОНАСС навигации работает следующим образом. Модуль GPS/ГЛОНАСС определяет данные о своем местонахождении, а затем при помощи мобильной связи по каналам Internet отсылает эти данные на сервер, где они хранятся, обрабатываются с электронными картами, и выстраивается картина передвижения транспортного средства. При этом совершенно не важно, с какой скоростью передвигается автомобиль с блоком. Основной принцип использования системы — определение местоположения путём измерения расстояний до объекта от точек с известными координатами — спутников. Расстояние вычисляется по времени задержки распространения сигнала от посылки его спутником до приёма антенной GPS/ГЛОНАСС - приёмника. То есть, для определения трёхмерных координат GPS/ГЛОНАСС - приёмнику нужно знать расстояние до трёх спутников и время GPS/ГЛОНАСС системы. Таким образом, для определения координат и высоты приёмника, используются сигналы как минимум с четырёх спутников.

Важную роль играет и просчет получаемых координат, который позволяет уменьшить возможные неточности и представить точную картину передвижения транспортного средства. Учитывая точность самой системы GPS/ГЛОНАСС - навигации, а так же разного рода программные механизмы позволяющие отсечь крупные ошибки, погрешность системы мониторинга не превышаем в целом 4%. Это дает возможность максимально скорректировать данные по пробегу транспортного средства.

Общим недостатком использования любой радионавигационной системы является то, что при определённых условиях сигнал может не доходить до приёмника, или приходить со значительными искажениями или задержками. Например, практически невозможно определить своё точное местонахождение в подвале или в тоннеле. Так как рабочая частота GPS/ГЛОНАСС лежит в дециметровом диапазоне радиоволн, уровень приёма сигнала от спутников может серьёзно ухудшиться под плотной листвой деревьев или из-за очень большой облачности. Нормальному приёму сигналов GPS/ГЛОНАСС могут повредить помехи от многих наземных радиоисточников, а также от магнитных бурь. По официальным данным чистая погрешность самого навигатора находится в пределах 10-15 метров.

Также не исключены ошибки в самой системе GPS/ГЛОНАСС позиционирования.