Открытый урок по физике полупроводники. Конспект лекции " полупроводники". Коррозионно-стойкие стали устойчивы к электрохимической коррозии

ПЛАН-КОНСПЕКТ УРОКА

Раздел 2 Тема 2.5 Полупроводниковые приборы

(Тема урока)

ФИО (полностью)

Дилигенская Юлия Владимировна

Место работы

БПОУ ВО «Череповецкий лесомеханический техникум им. В.П. Чкалова»

Должность

Преподаватель

Профессиональный модуль ПМ 01. Организация технического обслуживания и ремонта электрического и электромеханического оборудования

МДК 01.05 Типовые электрические схемы и функциональные узлы электронных и вычислительных устройств

ЭЛЕМЕНТЫ ЭЛЕКТРОННЫХ СХЕМ

  1. Литература

Основная

1.Тугов Н. М. , Глебов Б.А., Чарыков Н.А.Полупроводниковые приборы- М.: Издательский центр «Академия,» 2004.-240 с

2.Миклашевский С.П., Промышленные элементы электронных схем. М: Высшая школа, 2006- 214 с.

Справочная

1.Диоды, транзисторы, оптоэлектронные приборы: Справочник , М.: Издательский центр «Академия,» 2005

2. Дидактический материал по общей электротехнике с основами электроники, Учебное пособие- М: Высшая школа. 2006 – 108 с

5.Цель урока:

Ознакомить обучающихся с разновидностями полупроводниковых приборов;

Дать представление о функциональном назначении каждого прибора;

Показать практическое значение полупроводниковых приборов в специальности.

6. Задачи:

- обучающие

помочь студентам изучить классификацию полупроводниковых приборов;.

-развивающие

развивать познавательный интерес студентов.

-воспитательные

воспитать информационную культуру студентов.

7.Тип урока – усвоения новых знаний

8.Формы работы учащихся – индивидуальная и групповая.

9.Необходимое техническое оборудование – мультимедийный компьютер преподавателя, видеопроектор,

    Структура и ход урока

Таблица 1.

ТЕХНОЛОГИЧЕСКАЯ КАРТА УРОКА

Этап урока

Название используемых ЭОР

(с указанием порядкового номера из Таблицы 2)

Деятельность преподавателя

Деятельность студента

Время

(в мин.)

Организационно-мотивационный

1. Схема устройства компьютера

Приветствует студентов. Проверяет подготовку учащихся к уроку и выполнение домашнего задания.

Формулирует тему урока и раскрывает цели урока.

Задает вопросы, мотивирующие учащихся на изучение новой темы:

    Какие виды электронных схем вы знаете?

    Какие типы полупроводниковых приборов вам известны?

    Перечислите характеристики полупроводниковых материалов?

Обобщает ответы студентов, переходя к основной части урока.

Приветствуют преподавателя демонстрируют домашнюю работу в тетрадях.

Слушают и осмысливаю цели занятия, записывают дату и тему урока в тетрадях

Отвечают на поставленные вопросы.

Анализируют представленную на слайде информацию.

Основная часть:

Этап передачи новых знаний

2. Основные устройства полупроводниковых приборов

3. Характеристики диодов

4.Характеристики транзисторов

5. Характеристики микросхем

Лекция. (Демонстрация интерактивной презентации)

Обращает внимание на различие назначения и характеристик полупроводниковых приборов, используя видеофрагмент.

Указывает на конструкцию полупроводниковых приборов, выведя на экран схему, отражающую основные функциональные компоненты. полупроводниковых приборов

Рассказывает о каждом

полупроводниковом приборе

1) Диоды

Обращает внимание на то, что в основе свойств полупроводниковых материалов лежат общие принципы работы приборов

2) Транзисторы.

3)Микросхемы.

Слушают объяснение нового материала, делают записи в тетрадях.

Осмысливают новую информацию.

Изучают представленную схему, задают вопросы.

Чертят схемы в тетрадях.

Обсуждают, представленную на слайде информацию, демонстрируют свои знания из дисциплины « Физика» по характеристикам полупроводниковых приборов

Этап усвоения новых знаний

7 .Применение полупроводниковых приборов в специальности

Предлагает самостоятельно изучить понятие и назначение:

4) Полевые транзисторы в коммутационной аппаратуре.

Работа с учебником, выполнение записей в тетрадях. После изучения данного материала уясняют не понятные моменты.

Закрепления нового материала

Группа разбивается на бригады. Преподаватель каждой бригаде раздает карточки с ключевыми словами, которые надо дополнить терминами, по теме урока

Проверяет правильность выполнения задания

Каждая бригада работает над заданием, стараясь справиться с ним первой.

Подведения итогов урока

Оценивает деятельность студентов. Подводит общий итог урока.

Задает домашнее задание.

Благодарит студентов за урок.

Слушают и осмысливают итоги урока. Записывают домашнее задание в дневниках. Выражают отношение к уроку.

План конспект урока трудового обучения.

Класс 9

Тема раздела: Электротехника и основы электроники. (3 часа)
Тема урока №27: Полупроводниковые приборы.

Цель: Ознакомить с полупроводниковыми приборами.

Ход урока:
1. Организационная часть 3 мин.
а) Приветствие.
б) Выявление отсутствующих.
в) Повторение пройденного материала.
г) Объявление темы урока. Запись темы урока в тетрадях.
д) Доведение до учащихся целей и плана урока.

2.Повторение пройденного материала -7 мин.

    Что относится к основным видам электромонтажных работ?

    Что представляют собой проводниковые материалы?

    Применение проводниковых материалов?

3.Изучение нового материала 10 мин.

Полупроводниковыми приборами называются приборы, действие которых основано на использовании свойств полупроводниковых материалов

К полупроводниковым приборам относятся :

-Интегральные схемы (микросхемы)

Полупроводниковые диоды (в том числе варикапы, стабилитроны, диоды Шоттки),

Тиристоры, фототиристоры,

Транзисторы,

Приборы с зарядовой связью,

Полупроводниковые СВЧ-приборы (диоды Ганна, лавинно-пролетные диоды),

Оптоэлектронные приборы (фоторезисторы, фотодиоды, солнечные элементы, детекторы ядерных излучений, светодиоды, полупроводниковые лазеры, электролюминесцентные излучатели),

Терморезисторы, датчики Холла.

Основными материалами для производства полупроводниковых приборов являются кремний (Si), карбид кремния (SiС), соединения галлия и индия.

Электропроводность полупроводников зависит от наличия примесей и внешних энергетических воздействий (температуры, излучения, давления и т.д.). Протекание тока обуславливают два типа носителей заряда – электроны и дырки. В зависимости от химического состава различают чистые и примесные полупроводники.

Полупроводники

4.Практическая работа 18 мин.
Один из способов такой проверки - измерение омметром сопротивления между выводами эмиттера и коллектора при соединении базы с коллектором и при соединении базы с эмиттером. При этом источник коллекторного питания отключается от схемы. При исправном транзисторе в первом случае омметр покажет малое сопротивление, во втором - порядка нескольких сотен тысяч или десятков тысяч ОМ.

Полупроводниковый диод - полупроводниковый прибор с одним электрическим переходом и двумя выводами (электродами). В отличие от других типов диодов, принцип действия полупроводникового диода основывается на явлении p-n-перехода.

Тестирование полупроводниковых диодов

При тестировании диодов с помощью АММ следует использовать нижние пре- делы измерений. При проверке исправного диода сопротивление в прямом направ лении составит несколько сотен Ом, в обратном направлении - бесконечно большое сопротивление. При неисправности диода АММ покажет в обоих направ лениях сопротивление близкое к 0 или разрыв при пробое диода. Сопротивление переходов в прямом и обратном направлениях для германиевых и кремниевых диодов различное.

5. Итог урока 2 мин.
6. Уборка рабочих мест 5 мин.

ВСЕ УРОКИ ФИЗИКИ 11 класс
АКАДЕМИЧЕСКИЙ УРОВЕНЬ

1-й семестр

ЭЛЕКТРОДИНАМИКА

2. Электрический ток

УРОК 12/23

Тема. Полупроводниковые приборы

Цель урока: разъяснить учащимся принцип работы полупроводниковых приборов.

Тип урока: урок изучения нового материала.

ПЛАН УРОКА

Контроль знаний

1. Чем обусловлена электронная проводимость полупроводника?

2. Чем обусловлена дырочная проводимость полупроводника?

3. Какие примеси называют донорными? акцепторными?

4. Какую примесь надо ввести, чтобы получить полупроводник n -типа? p -типа?

Демонстрации

Фрагменты видеофильма «Электрический ток в полупроводниках».

Изучение нового материала

1. Полупроводниковый диод.

2. Как работает транзистор?

3. Применение полупроводников.

4. Интегральные микросхемы.

Закрепление изученного материала

1. Качественные вопросы.

2. Учимся решать задачи.

ИЗУЧЕНИЕ НОВОГО МАТЕРИАЛА

Полупроводниковый диод использует одностороннюю проводимость p -n -перехода. Такой диод имеет два контакта для присоединения к окружности.

Часто говорят, что в незначительное сопротивление диода в прямом направлении и очень большое сопротивление - в обратном. Однако это не совсем точное утверждение: по сути, для полупроводников вообще и особенно для электронно-дырочных переходов не выполняется закон Ома. Поэтому любого постоянного сопротивления в таких проводников нет.

Вольт-амперная характеристика полупроводникового диода имеет вид:

Полупроводниковые диоды используют для выпрямления тока переменного направления (такой ток называют переменным), а также для изготовления свето-диодов. Полупроводниковые выпрямители являются высоконадежными и имеют значительный срок использования.

Широко применяют полупроводниковые диоды в радиотехнических устройствах: радиоприемниках, видеомагнитофонах, телевизорах, компьютерах.

Чрезвычайно важными являются полупроводники в транзисторах.

Транзисторы - полупроводниковые приборы с двумя p - n -переходами.

Главным элементом транзистора является полупроводниковый кристалл, например германий, с введенными в него донорными и акцепторными примесями. Примеси распределены так, что между полупроводниками с одинаковой примесью (их называют эмиттер и коллектор) остается тонкий слой германия с примесью другого типа - этот слой называют базой.

Транзисторы бывают двух типов: p -n -p -транзисторы (рис. а) и n -p -n -транзисторы (рис. б).

В транзисторе p -n -p -типа в эмиттере и коллекторе дырок существенно больше, чем электронов, а в базе больше электронов; в транзисторе n -p -n -типа в эмиттере и коллекторе электронов больше, чем дырок, а в базе больше электронов.

Рассмотри работу транзистора p - n - p -типа. Три вывода транзистора из участков с различными типами проводимости включают в круг так, как показано на рисунке.

Если потенциал базы p - n - p -транзистора выше потенциала эмиттера, то ток не протекает через транзистор. Следовательно, транзистор может работать как электронный ключ. Если же потенциал базы ниже потенциала эмиттера, то даже незначительные изменения напряжения между эмиттером и базой приводят к значительным изменениям силы тока в цепи коллектора и, соответственно, к изменению напряжения на резисторе значительного сопротивления.

Рассмотрев работу транзистора, делаем вывод, что с помощью транзистора можно усиливать электрические сигналы.

Поэтому транзистор стал основным элементом очень многих полупроводниковых приборов.

Зависимость электропроводности полупроводников от температуры дает возможность применять их в термісторах.

Термистор - полупроводниковый терморезистор, электрическое сопротивление которого существенно изменяется при повышении температуры.

Термисторы применяют как термометры для измерения температуры.

Во многих полупроводниках связь между электронами и атомами настолько незначительный, что достаточно облучить светом кристаллы, чтобы у них возникла дополнительное количество свободных носителей зарядов.

Фоторезисторы применяются в системах сигнализации и автоматике, дистанционного управления производственными процессами, сортировка изделий и др.

Полупроводниковые диоды и транзисторы являются «кирпичиками» очень сложных устройств, называются интегральными микросхемами.

Микросхемы работают сегодня в компьютерах и телевизорах, мобильных телефонах и искусственных спутниках, в автомобилях, самолетах и даже в стиральных машинах.

Интегральную схему изготавливают на пластинке кремния. Размер пластинки - от миллиметра до сантиметра, причем на одной такой пластинке может размещаться до миллиона компонентов - крошечных диодов, транзисторов, резисторов и др.

Важными преимуществами интегральных схем является высокое быстродействие и надежность, а также низкая стоимость. Именно благодаря этому на основе интегральных схем и удалось создать сложные, но многим доступны приборы, компьютеры и предметы современной бытовой техники.

ВОПРОС К УЧАЩИМСЯ В ХОДЕ ИЗЛОЖЕНИЯ НОВОГО МАТЕРИАЛА

Первый уровень

1. С помощью какого опыта можно убедиться в односторонней проводимости полупроводникового диода?

2. Почему база транзистора должна быть очень малым?

3. Какую проводимость может иметь база транзистора?

Второй уровень

1. Почему ток в коллекторе примерно равен току в эмиттере?

2. В закрытом ящике размещен полупроводниковый диод и реостат. Конце приборов выведены наружу и присоединены к клеммам. Как определить, какие клеммы принадлежат диода?

ЗАКРЕПЛЕНИЕ ИЗУЧЕННОГО МАТЕРИАЛА

1. Как повлияет на работу транзистора увеличение толщины его базы?

2. Известно, что в каждом транзисторе имеется два p - n -переходы, которые включены навстречу друг другу. Можно ли заменить один транзистор двумя включенными точно так же диодами?

1. Начертите схему включения транзистора p - n - p для усиления напряжения.

2. Начертите схему включения транзистора n - p - n для усиления напряжения.

3. Почему для получения вольт-амперной характеристики полупроводникового диода используют две различные схемы соединения приборов (см. рис. а, б)?

Решения. В этом случае нельзя считать сопротивление амперметра бесконечно малым, а сопротивление вольтметра - бесконечно большим. Схему а нельзя использовать для измерения обратного тока через диод (практически весь ток пойдет через вольтметр). Схему нельзя использовать для измерения напряжения прямого тока (напряжение на амперметрі намного превышает напряжение на диоде).

ЧТО МЫ УЗНАЛИ НА УРОКЕ

Транзистор - электронный прибор из полупроводникового материала, обычно с тремя выводами, позволяющий управлять с помощью слабого входного сигнала электрическим током в электрической цепи.

С помощью транзистора можно усиливать электрические сигналы.

Термистор - полупроводниковый терморезистор, электрическое сопротивление которого существенно изменяется в случае повышения температуры.

Полупроводниковое устройство, в котором используют свойство проводника изменять свое сопротивление при освещении, называют фоторезистором.

Домашнее задание

1. Подр-1: § 16 (п. 5, 6, 7, 8); подр-2: § 8.

Рів1 № 6.6; 6.9; 6.15.

Рів2 № 6.16; 6.17; 6.18.

Рів3 №6.28; 6.2; 6.30.


Аукцион с использованием опорных слов как методический приём для актуализации опорных знаний, применение ИКТ, игровые моменты, позволяющие поменять виды деятельности на уроке, индивидуальная работа при закреплении изученного материала и последующая взаимопроверка выполненных заданий - всё это элементы, делающие обычный урок чуть интереснее.

Разработка урока по физике

Тема урока : Электрический ток в полупроводниках.

Цели урока:

Дидактическая - Познакомить учащихся с особым классом веществ – полупроводниками, ввести понятия собственной и примесной проводимости, изучить зависимость электропроводимости полупроводников от температуры и наличия примесей.

Развивающая: Способствовать расширению кругозора учащихся, развивать способность к восприятию и анализу технической и научной информации, умение пользоваться технической терминологией.

Воспитательная: Формировать ответственное отношение к приобретению знаний, навыки общения и самодисциплины.

МТО урока : медиа оборудование, презентация «Электрический ток в полупроводниках», содержащая анимационное пояснение к изучаемому материалу, карточки с ключевыми словами, раздаточный дидактический материал для самостоятельной работы.

Межпредметные связи. Химия. Темы: Периодическая система химических элементов Д.И.Менделеева. Ковалентная связь.

Тип урока : Урок усвоения новых знаний на основе имеющихся.

Методы и приёмы : аукцион с использованием опорных слов, применение ИКТ, использование игровых моментов для создания здоровье сберегающих условий, фронтальный опрос, индивидуальная работа, взаимопроверка.

План урока .

1. Организационный момент.

2. Актуализация опорных знаний.

3. Изучение нового материала.

3.1. Полупроводники.

3.2. Собственная проводимость полупроводников;

3.3. Примесная проводимость;

3.3.1. Донорные примеси;

3.3.2. Акцепторные примеси.

4. Закрепление изученного материала.

5. Домашнее задание.

6. Подведение итогов урока. Оценка работы учащихся.

Ход урока.

1. Организационный момент.

2. Актуализация опорных знаний (опрос в форме аукциона с использованием карточек с ключевыми словами).

Методика проведения аукциона .

Преподаватель показывает карточку с ключевыми словами (словом), а учащиеся высказываются в соответствии с заданной темой, не вдаваясь в подробности. Каждый правильный ответ – балл в копилку учащегося (карточка временно остаётся у него для подсчёта баллов в дальнейшем).

Карточка. Электрический ток

Ответ . Электрическим током называется упорядоченное направленное движение свободных заряженных частиц.

Карточка . Постоянный электрический ток.

Ответ . Электрический ток, не меняющийся ни по величине, ни по направлению называется постоянным током.

Карточка . Направление постоянного тока.

Ответ . За направление постоянного тока принято направление движения положительно заряженных частиц, т.е. от «+» к «-».

Карточка. Условия существования тока

Ответ . Для существования электрического тока необходимо наличие свободных заряженных частиц и сил, которые приводили бы эти частицы в направленное движение. Например, силы электрического поля.

Карточка. Группы веществ по электропроводимости.

Ответ . По электропроводимости вещества делятся на проводники и диэлектрики.

Карточка . Проводники.

Ответ . Проводники – это вещества, хорошо проводящие ток.

Карточка . Диэлектрики

Ответ. Диэлектрики – это вещества, не проводящие ток.

3. Изучение нового материала в сопровождении презентации.

- Записываем в тетради тему урока (слайд 1).

Мотивация к дальнейшему изучению темы (слайд 2).

Знакомимся с целями данного урока (слайд 3).

Корректируем свои представления о группах веществ по электропроводимости (слайд 4).

Записываем в тетрадь

По электрической проводимости вещества можно разделить на 3 основные группы: проводники, диэлектрики, полупроводники.

Проводники, которые хорошо проводят электрический ток (металлы, растворы электролитов, плазма и др.) Наиболее используемые проводники – Au, Ag, Cu, Al, Fe .

Диэлектрики – вещества, которые практически не проводят электрический ток (пластмассы, резина, стекло, фарфор, сухое дерево, бумага и др.)

3.1. Полупроводники

Записываем в тетрадь.

Полупроводники – вещества, проводящие ток только при определённых условиях.

Их электропроводимость зависит от температуры, освещённости, наличия примесей (Si , Ge , Se , In , As и др.).

По электрической проводимости они занимают промежуточное положение между проводниками и диэлектриками (Si, Ge, Se, In, As и др.) Кроме 12 чистых химических элементов, полупроводниками являются сернистый свинец, сернистый кадмий, закись меди, многие оксиды и сульфиды металлов, некоторые органические вещества. Наибольшее применение в технике имеют германий Ge и кремний Si (слайды 4,5,6).

Ещё чуть более полувека назад полупроводники не имели заметного практического значения. В электротехнике и радиотехнике обходились исключительно проводниками и диэлектриками. Но положение резко изменилось, когда теоретически, а затем и практически была открыта возможность управлять электрической проводимостью полупроводников.

В чём же главное отличие полупроводников от проводников, и какие особенности их строения позволили широко использовать полупроводниковые приборы практически во всех электронных устройствах?

3.2. Собственная проводимость

Записываем в тетрадь.

Проводимость чистых полупроводников называют собственной проводимостью .

Ещё раз вспоминаем условия существования тока. Повторяем механизм электропроводимости металлов, акцентируя внимание на роли электрического поля (слайд 8).

Ответ учащихся

Для существования электрического тока необходимо наличие свободных заряженных частиц и сил, которые приводили бы эти частицы в направленное движение. Это могут быть силы электрического поля, которое приводит электроны в упорядоченное движение.

Рассмотрим проводимость полупроводников на примере кремния Si (слайд 9).

Кремний – четырёхвалентный химический элемент. Каждый атом кремния во внешнем электронном слое имеет по четыре неспаренных электрона, которые образуют электронные пары (ковалентные связи) с четырьмя соседними атомами. Таким образом, в полупроводнике отсутствуют свободные заряженные частицы, способные создавать ток.

Но так бывает при обычных условиях, при невысоких температурах.

- Что произойдёт, если увеличить температуру вещества (слайд 10)?

При увеличении температуры энергия и скорости движения электронов увеличиваются и некоторые из них отрываются от своих атомов, становясь свободными электронами . Оставшиеся вакантные места с некомпенсированным положительным зарядом (виртуальные заряженные частицы ), называют дырками. Под воздействием электрического поля электроны и дырки начинают упорядоченное (встречное) движение, образуя электрический ток.

Чтобы понять, как же перемещаются дырки (вакантное место), проводим игру «Пустой стул» .

Методика проведения игры .

Суть игры заключается в следующем. На одном из рядов за первой партой освобождаем стул. Это исходная позиция. Учащийся, сидящий за второй партой, пересаживается на него. Таким образом, свободный стул оказывается уже не за первой, а за второй партой. Теперь учащийся, сидящий за третьей партой, занимает освободившееся место, и пустым оказывается стул за третьей партой и т.д. Таким образом, вакантное место – пустой стул (в полупроводнике это дырка) перемещается всё дальше и дальше от первой парты, двигаясь в сторону противоположную движению участников игры (в полупроводнике – в сторону, противоположную движению электронов).

Игра помогает снять напряжение и продолжить дальнейшее успешное изучение учебного материала.

Записываем в тетрадь.

Электрический ток в чистых полупроводниках создаётся свободными электронами и дырками, которых одинаковое количество.

Это собственная проводимость полупроводников.

При увеличении температуры число свободных электронов и дырок становится больше, проводимость полупроводников растет, сопротивление уменьшается.

Записываем в тетрадь.

При увеличении температуры проводимость полупроводников растет, сопротивление уменьшается.

Задание учащимся.

Сравните и объясните графики зависимости сопротивления металлов и полупроводников от температуры (слайд 11).

Ответы учащихся по слайду.

При увеличении температуры сопротивление металлов возрастает. Это объясняется тем, что при увеличении температуры ионы в узлах кристаллической решётки колеблются интенсивнее, хаотичность движения свободных электронов возрастает, и суммарный заряд, проходящий через поперечное сечение проводника в единицу времени уменьшается.

При увеличении температуры сопротивление полупроводников уменьшается. Это объясняется тем, что при нагревании полупроводников в них становится больше свободных носителей заряда, что приводит к увеличению силы тока, а это равносильно уменьшению сопротивления.

3.3 Примесная проводимость полупроводников (слайды 12,13,14).

Собственная проводимость полупроводников явно недостаточна для технического применения полупроводников. Поэтому для увеличения проводимости в чистые полупроводники внедряют примеси (легируют), которые бывают донорные и акцепторные

Записываем в тетрадь

Проводимость полупроводников с добавлением примесей называется примесной проводимостью. Примеси бывают донорные и акцепторные

3.3.1. Донорные примеси.

Если добавить в чистый расплавленный кремний незначительное количество мышьяка (примерно 10-5 %), после твердения образуется обычная кристаллическая решетка кремния, но в некоторых узлах решетки вместо атомов кремния будут находиться атомы мышьяка.

Мышьяк, как известно, пятивалентный элемент. Четырёхвалентные электроны образуют парные электронные связи с соседними атомами кремния. Пятому валентному электрону связи не хватит, при этом он будет слабо связан с атомом Мышьяка, который легко становится свободным. В результате каждый атом примеси отдаст один свободный электрон.

Электроны из атомов кремния могут становиться свободными, образуя дырку, поэтому в кристалле могут одновременно существовать и свободные электроны и дырки. Однако свободных электронов во много раз будет больше, чем дырок.

Полупроводники, в которых основными носителями зарядов являются электроны, называют полупроводниками n-типа.

Записываем в тетрадь

Примеси, атомы которых легко отдают электроны, называются донорными (полупроводник n -типа).

3.3.2. Акцепторные примеси

Если в кремний добавить незначительное количество трехвалентного индия, то характер проводимости полупроводника изменится. Поскольку индий имеет три валентных электрона, то он может установить ковалентную связь только с тремя соседними атомами. Для установления связи с четвертым атомом электрона не хватит. Индий «одолжит» электрон у соседних атомов, в результате каждый атом Индия образует одно вакантное место - дырку.

В случае акцепторной примеси основными носителями заряда во время прохождения электрического тока через полупроводник являются дырки. Полупроводники, в которых основными носителями зарядов являются дырки, называют полупроводниками р-типа.

Записываем в тетрадь

Примеси, которые «захватывают» электроны атомов кристаллической решетки полупроводников, называются акцепторными (полупроводник р-типа).

4. Закрепление изученного материала .

4.1. Фронтальный опрос (слайд 16).

Что такое полупроводники?

Какими частицами создаётся ток в полупроводниках?

Чем примесная проводимость отличается от собственной проводимости?

Для чего легируют чистые полупроводники?

Что такое полупроводник р – типа?

Что такое полупроводник n – типа?

Почему с увеличением температуры сопротивление полупроводников падает?

4.2. Самостоятельная работа по карточкам .

Установите соответствие, какие физические термины и высказывания необходимы для рассказа по темам «Электрический ток в металлах», «Электрический ток газах», «Электрический ток в растворах электролитов», «Электрический ток в полупроводниках»?

Условие: при выполнении работы исправления не допускаются .

Металлы Газы Растворы электролитов Полупроводники

1. Ионы, 2. Электроны, 3. Примеси, 4. Дырка, 5. Сопротивление возрастает с ростом температуры, 6. Рекомбинация, 7. При нагревании сопротивление уменьшается, 8. Проводник, 9. Кристаллическая решётка, 10. Электрическая дуга, 11. Самостоятельный разряд,12. Огни святого Эльма, 13. Донорная, 14. Диэлектрик, 15. Электронное облако, 16. Вакуумный диод, 17. Газоразрядная трубка, 18. Акцепторная, 19. Собственная проводимость, 20. Вакуум, 21. Сверхпроводимость, 22. Ионизация, 23. Электролитическая диссоциация, 24. Электроды, 25.Электролиз, 26. Кинескоп, 27. Гальванопластика.

После выполнения задания учащиеся обмениваются карточками и проверяют друг друга, делая исправления , оценивая работу товарища.

Затем работы проверяются ещё раз с помощью ключа и передаются преподавателю.

Ключ к заданию

Металлы – 1, 2, 5, 8, 9, 21.

Газы – 1,2,6,7,10,11,12,14,17,22.

Растворы электролитов – 1,6,7,23,24,25,27.

Полупроводники – 1,2,3,4,7,9,13,18,19.

5. Домашнее задание:

1. Подготовить сравнительную таблицу «Электрический ток в различных средах».

2. Подготовить сообщение «Первое практическое применение полупроводниковых термоэлементов в годы ВОВ» («Партизанский котелок») – по желанию.

6. Подведение итогов. Оценка работы учащихся.

Использованная литература

Физика: Учеб. для 10 кл. общеобразоват. учреждений/ Г.Я.Мякишев, Б.Б.Буховцев, Н.Н.Сотский-- 12- е изд.-М. : Просвещение, 2010. - 336 с.,: ил.-ISBN 5-01 011578-8.

Электронный учебник «Открытая физика», Физикон

По технологии на тему: «Полупроводниковый диод»

МБОУ «ООШ №16»

г. Гусь-Хрустальный.

План - конспект урока

по технологии

на тему: «Полупроводниковый диод»

Учитель технологии

План-конспект урока

Тема урока: «Полупроводниковый диод»

Цели урока:

1. Обучающие:

1.1. Ознакомить учащихся:

С устройством полупроводникового диода;

С технологией изготовления полупроводникового диода;

С принципами работы полупроводникового диода;

С применением полупроводникового диода на практике, в быту, в производстве;

Со схемой выпрямления переменного тока.

2. Развивающие:

2.1. Способствовать развитию познавательного интереса к предмету.

2.2. Способствовать овладению основными способами мыслительной деятельности.

3. Воспитательные:

3.1. Способствовать формированию трудовых качеств личности.

Методическое оснащение урока.

1. Материально-техническая база:

Компьютерный класс;

Мультимедиа-проектор;

Набор полупроводниковых диодов;

Электрическая батарейка, лампочка, соединительные провода.

2. Дидактическое обеспечение:

- «Радиоэлектроника, автоматика и элементы ЭВМ», М., «Просвещение», 1990;

- «Методика трудового обучения», М., «Просвещение», 1997;

- «Школа и производство» № 1, 2005;

- «Практикум по радиотехнике», М., «Просвещение»,1996;

Тест «Полупроводниковый диод».

Ход урока

1. Организационный момент.

2. Повторение пройденного материала по теме «Полупроводники».

Чтобы проверить пройденный материал и подготовить учащихся к усвоению нового материала, целесообразно задать им следующие вопросы:

1. Какие элементы относятся к полупроводникам?

2. Как происходит собственная проводимость?

3. Как происходит примесная проводимость?

4. За счет чего появляются свободные электроны?

5. Где больше проводимость в металлах или в полупроводниках?

6. Какие полупроводники являются основными?

3. Изложение нового материала о полупроводниковом диоде и схеме выпрямления переменного тока.

Полупроводниковый диод – это устройство, которое пропускает электрический ток только в одном направлении.

Устройство диода: берут кристалл кремния, обладающий проводимостью n-типа. В одну из поверхностей образца вплавляют индий. Вследствие атомов индия вглубь монокристалла германия у поверхности германия образуется область с проводимостью p-типа. Остальная часть образца германия, в которую атомы индия не проникли, по-прежнему имеет проводимость n-типа.

Между двумя областями с проводимостями разных типов возникает p-n-переход (демонстрация слайда № 1).

Получить p-n-переход не удается путем механического соединения двух полупроводников с различными типами проводимости, так как при этом получается слишком большой зазор. Толщина p-n-перехода должна быть не более межатомных расстояний. Для предотвращения вредных воздействий кристалл помещают в герметичный металлический корпус.

На электрических схемах полупроводниковый диод обозначается (демонстрация слайда № 2).

Современные полупроводниковые диоды имеют вид: (демонстрация слайда № 3).

(После этого учитель демонстрирует образцы полупроводниковых диодов).

Любой полупроводниковый диод характеризуется прямым максимальным током Iпр. маx. и обратным максимальным напряжением Uобр. max..Если ток через диод будет больше максимального тока, то p-n-переход выйдет из строя (расплавится). Если обратное напряжение будет больше максимального напряжения, которое может выдержать диод, то p-n-переход пробьется электрическим зарядом. В обоих случаях полупроводниковый диод выйдет из строя.

Подключение диода к постоянной электрической цепи.

Подключим полупроводниковый диод к источнику питания таким образом (демонстрация слайда № 4).

При таком подключении электрический ток через диод и нагрузку проходить не будет, так как нет носителей заряда через p-n-переход. Его сопротивление в этом случае будет очень большим. Говорят, что диод находится в запирающем состоянии.

Поменяем полярность источника питания. При таком подключении электрический ток проходит через диод и через нагрузку.

Говорят, что диод находится в открытом состоянии (демонстрация слайда № 5).

Схема выпрямления электрического тока.

Постоянный электрический ток можно получить при включении диода в цепь с переменным напряжением (демонстрация слайда № 6).

Рассмотрим на графике, как происходит выпрямление переменного тока (демонстрация слайда № 7).

Такое выпрямление переменного тока называется однополупериодным выпрямлением. Ток в этом случае называется пульсирующим.

Данное выпрямление переменного тока имеет широкое применение, например: если диод Д226Б включить по данной схеме, а вместо нагрузки взять лампочку мощностью 100 Вт, то такая лампочка будет гореть 7-10 лет. Схему называют схемой «вечной лампочки».

4. Закрепление нового учебного материала.

Учащиеся зарисовывают в тетрадях схему выпрямления (демонстрация слайда № 8). Далее учащимся предлагается на компьютерах в программе Elektronish Workbench составить такую схему как на слайде и получить на дисплее осциллографа выпрямленное напряжение. Чтобы сгладить пульсации выпрямленного тока к нагрузке Rn можно подключить параллельно конденсатор и рассмотреть полученное выпрямленное напряжение. Сравнить результаты.

(Учащимся может быть предложен тест «Полупроводниковый диод»).

5. Заключительная часть.

Учитель подводит итоги урока, называет главные вопросы, которые учащиеся должны хорошо знать:

Определение диода;

Устройство диода;

Подключение диода к постоянной электрической цепи;

Подключение диода к переменной электрической цепи;

Схему «вечной лампочки».

Учитель объявляет оценки за устные ответы и самостоятельную работу на компьютере.