Работа с ЖК индикатором на отладочной плате STM32L-Discovery. Управление ЖК дисплеем с помощью функций CodeVisionAVR Блок делителей частоты

Урок 12

Часть 5

LCD индикатор 16×2

Сегодня мы продолжим изучение жидкокристаллического индикатора символьного , который способен выводить определённые символы в две строки по 16 символов в каждую.

В прошлой части мы завершили и проверили написание кода функции, которая выводит любой символ на экран дисплея.

Теперь пришло время написать функцию вывода на экран целой строки, так как выводить посимвольно не совсем удобно, хотелось бы работать со строками. Добавим данную функцию прямо перед функцией main() и передавать мы ей будем массив символов неопределённой размерности

//—————————————-

void str_lcd ( char str1 )

{

}

//—————————————-

Вызовем данную функцию в main(), удалив перед этим весь код посимвольного вывода на дисплей

LCD_ini (); //Инициализируем дисплей

setpos (0,0);

str_lcd ( "Hello World!" );

Дальше начнём писать тело функции вывода строки. Объявим в теле функции переменную для символа. Переменная у нас будет несколько иного типа. Как правило с таким типом лучше распознаются коды символов. Вы можете, конечно, поэксперементировать с другими типами

void str_lcd ( char str1 )

wchar_t n ;

Далее мы, соответственно, организуем цикл и будем попеременно перебирать все переданные символы в массиве и выводить их на дисплей. Применим также мы вариант представления нулевого симвлова "n" и именно до него мы и будем перебирать символы

Wchar_t n ;

for ( n =0; str1 [ n ]!=""; n ++)

sendchar ( str1 [ n ]);

Соберём код и проверим в протеусе работу кода

Теперь можно попробовать вывести строку ещё и в другое место экрана. Напишем код в main()

str_lcd ( "Hello World!" );

setpos (2,1);

str_lcd ( "String 2" );

while (1)

Соберём код и посмотрим результат

Всё работает! Отлично!

Ну конечно нужно ещё помотреть, как будет код работать на живом дисплее с живым контроллером. Для этого мы прошьём контроллер

Оформляем функции в отдельный модуль

Дошли мы с кодом до такого состояния, что наш главный и единственный файл с кодом переполнился до того, что в нём теперь тяжело уже вообще что-то найти. Как же мы с этим можем боротья? Бороться с этим мы будем путём оформления кода функций для отдельно взятого устройства или шины или какой-то технологии в отдельный модуль. Грамотный модуль состоит как правило из заголовочного файла и файла реализации функций. Поэтому давайте для нашего LCD дисплея мы так и поступим. Также это всё дело нужно для того, что если мы будем писать новый проект, то мы данные файлы будем просто к нему подключать, если нам потребуется воспользоваться LCD дисплеем. Это будет нашей так называемой библиотекой для дисплея. Конечно, библиотеки обычно пишутся и компилируются в отдельный файл lib, но в этом случае обычно нет исходного кода и данные библиотеки не могут быть подправлены. А наша библиотека будет вполне исправимой и нам ещё ой как пригодится в будущем.

Но прежде, чем создать данную библиотеку, мы создадим главный заголовочный файл и назовём его main.h, чтобы убрать в данный файл все подключенные библиотеки, различные глобальные переменные и макроподставновки

Для этого мы в дереве проектов щёлкаем правой кнопкой по нашему проекту Test09 и выбираем в контекстном меню субменю Add , а в нём уже выбираем пункт New Item

И в открывшемся диалоге выбираем тип файла, который мы будем создавать, "Include File " И внизу в имени файла меняем IncFile1 на main , затем жмём кнопку Add.

Соответственно, у нас создастся файл main.c вот с таким содержимым

#ifndef MAIN_H_

#define MAIN_H_

#endif /* MAIN_H_ */

Это очень хорошо. Например. в Keil, когда мы занимается программированием контроллеров STM, мы должны это всё писать в ручную. Здесь данная директива говорит о том, что, если файл уже подключался в исполняемый код, чтобы прероцессор его повторно не включал.

В данный файл мы посместим подключения всех заголовочных файлов библиотек и все макроподстановки, а в файле Test09.c всё это, конечно, мы удалим

#ifndef MAIN_H_

#define MAIN_H_

#define F_CPU 8000000UL

#include

#include

#include

#include

#include

//—————————————-

#define e1 PORTD |=0b00001000 // установка линии E в 1

#define e0 PORTD &=0b11110111 // установка линии E в 0

#define rs1 PORTD |=0b00000100 // установка линии RS в 1 (данные)

#define rs0 PORTD &=0b11111011 // установка линии RS в 0 (команда)

//—————————————-

#endif /* MAIN_H_ */

Но недостаточно данный заголовочный файл подключить в Solution Explorer, его также мы должны в файле Test09.c подключить в самом начале в код

#include "main.h"

//—————————————-

Соберём проект, ещё раз проверим его работоспособность.

Теперь начнём создавать нашу библиотеку для дисплея.

Для этого мы таким же образом, как и main.h, создадим заголовочный файл lcd.h

#include

#include "lcd.h"

И наоборот, в файл lcd.h мы подключим файл main.h

#ifndef LCD_H_

#define LCD_H_

#include "main.h"

Насчет того, что получится какое-то перекрёстное зацикливание, можно не беспокоиться — директивы не дадут такому случиться.

Также все макроподстановки из файла main.h мы заберём в файл lcd,h, а в main.h удалим

#include "main.h"

//—————————————-

void LCD_ini ( void );

void setpos ( unsigned char x , unsigned y );

void str_lcd ( char str1 );

void sendchar ( unsigned char c );

//—————————————-

А, чтобы забрать все функции по работе с дисплеем из файла Test09.c, мы создадим теперь уже другой файл — lcd.с . В нём и будет код реализации всех функций

Создаётся файл точно таким же образом, только вместо "Include File" мы выбираем тип файла "C File".

Файл lcd.c создан. В нём уже не будет никаких директив, единственное, будет авторский комментарий, который мы удалим, чтоб не мешался.

В данном файле мы также подключим заголовочный файл lcd.h

#include "lcd.h"

//—————————————-

Теперь мы в данный файл перенесём полностью все функции, предназначенные для работы с дисплеем, из файла Test09.c. В нём останутся только две фунции — port_ini и main() .

Тем самым мы очень серьёзно разгрузим главный файл приложения, сделав его удобочитаемым.

Но этого нам недостаточно. Ни одна функция теперь не будет "видна" в файле Test09.c. Поэтому те функции, которые мы будем использовать в других файлах, мы обязаны объявить, или, как говорят в народе, создать на них прототипы. Делается это обычно в заголовочном файле. Поэтому мы создадим прототипы в заголовочном файле lcd.h. Прототип делается очень легко. Пишется, или обычно копируется заголовок функции со всеми аргументами (всё кроме тела) и в конце ставится точка с запятой. Нам нужны будут функции инициализации дисплея, позиционирования на дисплее и вывода строки на дисплее. Символы мы отдельно пока выводить не будем, поэтому на соответствующую функцию мы прототип не создаём. Вот наши прототипы

#include "main.h"

//—————————————-

void LCD_ini ( void );

void setpos ( unsigned char x , unsigned y );

void str_lcd ( char str1 );

//—————————————-

#define e1 PORTD |=0b00001000 // установка линии E в 1

Теперь соберём файл, запустим его в протеусе, и проверим его работоспособность. Также проверим на практике. Если всё работает, то мы всё сделали правильно. Проект на весь урок приложен внизу и доступен по ссылке "Исходный код".

Таким образом, в сегодняшнем уроке мы много чему научились. Мы научились работать с символьным дисплеем и подключать его к контроллеру AVR. Также мы в рамках данного урока научились грамотному оформлению кода и использованию модульного программирования.

Post Views: 11 438

Работа с дисплеем 16x2 на контроллере HD44780 в Bascom-AVR


Жидкокристаллические дисплеи на контроллере HD44780 (а также совместимом с ним KS0066) очень распространены благодаря простому методу работы с ними, а так же небольшой цене. В зависимости от исполнения дисплея, они позволяют выводить от 8-и до 40-ка символов в каждой строке, строк может быть одна, две или четыре. Чаще всего встречаются 8*2 (восемь символов*две строки), 16*2 и 20*4.

Для примера рассмотрим распиновку индикатора 16*2 (у всех дисплеев на контроллере HD44780 она похожа)

У каждого дисплея на контроллере HD44780 для подключения имеется 14 выводов + 2 вывода для подсветки (если она имеется):

  1. Земля, GND
  2. Напряжение питания, Vcc (+5V)
  3. Настройка контрастности, Vo
  4. Выбор регистра, R/S
  5. Чтение/запись, R/W
  6. Сигнал разрешения чтения/записи, E
  7. Bit 0, D0
  8. Bit 1, D1
  9. Bit 2, D2
  10. Bit 3, D3
  11. Bit 4, D4
  12. Bit 5, D5
  13. Bit 6, D6
  14. Bit 7, D7
  15. Питание подсветки для дисплеев с подсветкой, LED +
  16. Питание подсветки для дисплеев с подсветкой, LED -


Данные в дисплей загружаются по шине данных (D0-D7), при этом контроллер поддерживает как 8-и, так и 4-х битное подключение. 4-х битное подключение экономит ножки микроконтроллера и чаще всего достаточно для многих задач (при 8и битном подключении можно быстрее загружать данные в контроллер дисплея, но нам пока это ни к чему, поэтому не будем его рассматривать). Для 4-х битного подключения используются 4 последних бита шины (D4-D7).

В качестве примера будем использовать дисплей 20х4, подключенный к микроконтроллеру ATmega8 по 4х битному интерфейсу по схеме ниже



Дисплей требует для питания 5 вольт, делителем на резисторе R1 настраивается контрастность отображаемых символов, вывод R/W подключается к земле (т.е. выбрана постоянная запись в дисплей). Подключать оставшиеся выводы можно к любым свободным ножкам микроконтроллера. Конфигурация ножек для подключения дисплея у микроконтроллера ATmega8 будет выглядеть следующим образом:

$regfile = "m8def.dat"
$crystal = 1000000 "частота работы 1 МГц

Config Lcd = 20 * 4


Config Lcdpin = Pin , Db4 = PortB . 3 , Db5 = PortB . 2 , Db6 = PortB . 1 , Db7 = PortB . 0 , E = PortB . 4 , Rs = PortB . 5

CLS - очистка дисплея

LCD - вывести данные на дисплей (пример: Lcd "Hello world" выведет надпись Hello world )

А теперь напишем вот такую небольшую программку, которая выведет надпись на дисплей:

$regfile = "m8def.dat" "выбранный тип микроконтроллера
$crystal = 1000000 "частота работы 1 МГц

Config Lcd = 20 * 4 "указываем какой у нас дисплей
"и конфигурируем ножки для подключения
Config

Cursor Off
Cls "очистим дисплей

Lcd "LCD 20*4 HD44780"
Locate 2 , 8 "переводим курсор на вторую строку, восьмое знакоместо
Lcd "сайт" "выводим текст

End

в результате на дисплее получим следующее:

Также в Bascom-AVR есть еще несколько дополнительных команд для работы с дисплеями:

HOME - также возвращает курсор на верхнюю строчку, но в отличии от команды UPPERLINE эта команда может принимать дополнительные значения: если после нее поставить букву L , T или F то курсор переместится в начало строчки, название которой начинается с соответствующей буквы (пример: для того чтобы переместить курсор в начало третьей строки, нужно написать команду HOME T )

пример кода для вывода информации на дисплей с использованием этих команд:

$regfile = "m8def.dat" "выбранный тип микроконтроллера
$crystal = 1000000 "частота работы 1 МГц

Config Lcd = 20 * 4 "указываем какой у нас дисплей
"и конфигурируем ножки для подключения
Config Lcdpin = Pin , Db4 = Portb . 3 , Db5 = Portb . 2 , Db6 = Portb . 1 , Db7 = Portb . 0 , E = Portb . 4 , Rs = Portb . 5

Cursor Off "выключим отображение курсора
Cls "очистим дисплей

Lcd "*** HD44780 LCD ***" "выводим текст в первой строке
Lowerline "переходим на вторую строку
Lcd "Line number 2" "выводим текст
Thirdline "переходим на третью строку
Lcd "AaBbCcDdEeFfGgHfIiJj" "выводим на третьей строке
Fourthline "переходим на четвертую строку
Lcd "1234567890" "печатаем на четвертой строчке

End "конец программы


и пример того как использовать сдвиг текста:

$regfile = "m8def.dat" "выбранный тип микроконтроллера
$crystal = 1000000 "частота работы 1 МГц

Dim A As Byte "переменная для организации цикла

Config Lcd = 20 * 4 "указываем какой у нас дисплей
"и конфигурируем ножки для подключения
Config Lcdpin = Pin , Db4 = Portb . 3 , Db5 = Portb . 2 , Db6 = Portb . 1 , Db7 = Portb . 0 , E = Portb . 4 , Rs = Portb . 5

Cursor Off "выключим отображение курсора
Cls "очистим дисплей

Locate 1 , 11 "устанавливаем курсор на первой строке, десятом знакоместе
Lcd "Bascom-AVR" "выведем текст

"цикл сдвига влево
For A = 1 To 10 "повторяем этот цикл пока переменная А не достигнет значения 10
Shiftlcd Left "сдвинем текст влево
Waitms 300 "задержка 300 миллисекунд
Next A
"цикл сдвига вправо
For A = 1 To 10 "повторяем цикл пока переменная А не достигнет значения 10
Shiftlcd Right "теперь сдвинем текст вправо
Waitms 300 "задержка 300 миллисекунд
Next A "увеличиваем значение переменной А на 1

"продолжаем выполнение программы
Wait 1 "задержка 1 секунда

Home F "устанавливаем курсор на нижнюю строчку

Lcd "END PROGRAM" "и выводим надпись

End "конец программы

Читатель нашего блога Михаил (mishadesh ) создал отличную библиотеку для работы с LCD и предложил написать статью для демонстрации ее возможностей. Собственно, сегодня именно об этом и пойдет речь 😉 Разберем, какие реализованы функции, а также в конце статьи будет выложен пример для работы с дисплеем.

Как обычно начнем с обсуждения железа… А тут на самом деле и не о чем говорить. Как и в первой статье, посвященной работе с дисплеями (), мы будем использовать отладочную плату Mini STM32 . Собственно, подключение дисплея, основные команды для записи данных, последовательность инструкций для инициализации – все это там есть =) Поэтому сейчас переходим сразу к обсуждению библиотеки для работы с графическими дисплеями.

Вот полный список функций с пояснениями:

Следующая функция, как видно из ее названия, меняет ориентацию экрана. Возможно два положения экрана, соответственно два возможных значения параметра orientation :

  • Orientation_Portrait
  • Orientation_Album

Функция отрисовывает на графическом дисплее символ, располагая его по переданным в функцию координатам, а также задавая его цвет. Начертание символа соответствует шрифту, определенному в файле font.c (файл идет в составе библиотеки).

Из функции LCD_DrawChar() плавно вытекает следующая функция:

void LCD_DrawString(char * s, uint16_t x, uint16_t y, uint16_t color, uint16_t backColor, uint8_t isTransparent) ;

Тут понятно и без лишних слов 😉 Функция печатает на LCD строку текста. Базой для этой функции является предыдущая – LCD_DrawChar() .

Помимо символов и текста, конечно же, необходимо иметь возможность нарисовать основные графические примитивы, например линию или круг. Для этого реализовано следующее:

void LCD_drawLine ( int x1, int y1, int x2, int y2, uint16_t color) ; void LCD_DrawRect ( int x1, int y1, int x2, int y2, uint16_t color, uint8_t filled ) ; void LCD_DrawEllipse(uint16_t X1, uint16_t Y1, uint16_t R, uint16_t color) ;

Для рисования линии нужно передать в функцию координаты начальной точки, координаты конечной точки, а также нужный цвет. Для прямоугольника – координаты верхнего левого угла и координаты правого нижнего угла (!). Последний параметр filled – определяет, необходимо ли выполнять заливку фигуры. Единица – значит да, фигура будет закрашена выбранным цветом, ноль – будет нарисован только контур фигуры. С этим понятно) Осталась только окружность – функция DrawEllipse() . Здесь вместо координат начала и конца (верхнего/нижнего углов) передаем в качестве аргументов центр окружности и радиус.

Ну и напоследок еще одна функция:

void LCD_FillScr(uint16_t color) ;

Функция позволяет залить экран сплошным цветом.

Все перечисленные функции реализованы в файле GUI_DRV.c .

Помимо них библиотека включает в себя функции для записи данных в дисплей (LCD_DRIVER.c ) а также уже упомянутые шрифты (font.c ). Как видите, все четко отсортировано по разным файлам, так что в принципе все очень понятно, поэтому давайте перейдем к практическому примеру!

Давайте разбираться! Идем в файл main.c … Не буду приводить полный код функций инициализации периферии и дисплея, все это можно посмотреть непосредственно в файле, либо в предыдущей статье, ссылка на которую была в начале этой статьи 😉 Функция main() :

int main(void ) { initPeriph() ; initFSMC() ; initLCD() ; delay(10000 ) ; LCD_FillScr(0xFFFF ) ; delay(100 ) ; LCD_SetOrient(Orientation_Album) ; delay(100 ) ; LCD_DrawString("Библиотека для LGDP4532" , 30 , 30 , 0x888F , 0x0000 , 0 ) ; LCD_DrawRect(100 , 100 , 200 , 200 , 0x0000 , 0 ) ; LCD_DrawRect(120 , 120 , 180 , 180 , 0xFF00 , 1 ) ; LCD_DrawEllipse(150 , 150 , 50 , 0xF000 ) ; while (1 ) { } }

Начинаем с инициализации, закрашиваем экран белым цветом и устанавливаем альбомную ориентацию экрана. И теперь переходим к отрисовке графики)

Выводим на экран строку, а также два прямоугольника и круг. Результат налицо:

Очевидно, что все работает отлично 😉

Итак, на этом на сегодня заканчиваем, огромное спасибо Михаилу за проделанную работу и приведенные материалы. Вот контакты автора библиотеки:

Skype – mishadesh

Mail – [email protected]

На этом все, спасибо за внимание, до скорых встреч!

Общие сведения

На отладочной плате STM32L-Discovery установлен жидкокристаллический индикатор (ЖКИ, англ. LCD. Liquid crystal display), имеющий шесть 14 сегментных знаков, 4 знака двоеточия (Colon), 4 точки (DP), 4 полоски (Bar). Все сегменты объединены в группы СOM0, COM1, COM2, COM3 по 24 сегмента. Каждая группа имеет свой отдельный «общий провод».


На отладочной плате установлен микроконтроллер STM32L152RBT6. В микроконтроллере есть встроенный контроллер ЖКИ, который управляет монохромными жидкокристаллическими индикаторами.
Контроллер ЖКИ:

  1. Позволяет настраивать частоту обновлений (частоту кадров - частота, с которой обновляется информация на ЖКИ)
  2. Поддерживает статический и мультиплексный режим управления
  3. Поддерживает программную установку контраста
  4. Позволяет использовать несколько уровней управляющего напряжения (до четырех)
  5. Использует двойную буферизацию, позволяющую обновлять данные в регистрах LCD_RAM в любое время выполнения программы, не нарушая целостность отображаемой информации

Регистры памяти контроллера ЖКИ

В микроконтроллере STM32L152RB выделены специальные регистры LCD_RAM, информация, хранимая в которых, соответствует группе сегментов COM0 - COM3. Каждой группе соответствует два 32 разрядных регистра. Такое количество регистров позволяет микроконтроллеру управлять ЖКИ c большим количеством сегментов, чем установленным на отладочной плате.

Для управления ЖКИ со 176 сегментами используются 4 группы COM0 - COM3 по 44 сегмента каждая, для управления ЖКИ с 320 сегментами используются 8 групп COM0 - COM7 по 40 сегментов каждая.



На отладочной плате STM32L-Discovery используется ЖКИ с 96 сегментами, разделенными на 4 группы COM0 - COM3 по 24 сегмента каждая.


ЖКИ на отладочной плате STM32L-Discovery подключен таким образом, что используются биты S40, S41 вторых регистров LCD_RAM в каждой группе и биты S0-S27 первых регистров LCD_RAM. Для уменьшения количества используемых регистров, информация из битов S40-S43 будет записываться в свободные биты S28-S31, используя функцию переназначения (remapping).

Блок делителей частоты

Блок делителей частоты (Frequency generator) позволяет добиться различной частоты кадров (frame rates) на ЖКИ в диапазоне от 32 кГц до 1 МГц. В качестве источника тактирующего сигнала могут использоваться:
  1. Внешний НЧ генератор с частотой 32 кГц (LSE. Low speed external)
  2. Внутренний НЧ генератор с частотой 37 кГц (LSI. Low speed internal)
  3. Внешний ВЧ генератор с делителями частоты на 2,4,8 и 16 и максимальной частотой 1 МГц. (HSE. High speed external)
Для достижения точной синхронизации и снижения смещения напряжения постоянного тока через сегменты ЖКИ источник тактирующего сигнала должен обладать стабильностью. Тактирующий сигнал LCDCLK поступает в контроллер ЖКИ. Частота тактового сигнала делится, в соответствии с коэффициентами деления, которые устанавливаются битами PS, DIV регистра LCD_FCR (Frame Control Register). Результирующая частота на выходе блока делителей частоты рассчитывается по формуле:

F ck_div =F LCDCLK / (2 PS *(16+DIV))

Частота кадров рассчитывается по формуле:

F Frame =f ck_div *duty

Где duty – коэффициент заполнения – отношение длительность импульса к его периоду. За время одного кадра на ЖКИ последовательно выводится информация из регистров LCD_RAM[x], LCD_RAM и тд. Для ЖКИ установленного на отладочной плате, за один кадр контроллер ЖКИ должен вывести информацию из 4 групп сегментов COM0 - COM3, следовательно, длительность управляющего импульса для одной группы будет 1/4 длительности кадра, т.е. duty=1/4.

Управление ЖКИ

Существует два способа управления ЖКИ – статический режим управления и мультиплексный режим управления. При статической индикации каждый сегмент разряда индикатора подключен к выходу микроконтроллера. Применительно к ЖКИ, на отладочной плате STM32LDiscovery, потребуется 6*14=84 выводов микроконтроллера (без учета двоеточий, точек и полосок). Из-за использования такого количества выводов, подключение другой периферии станет невозможным. Микроконтроллер STM32L152RB имеет 64 вывода. При мультиплексном режиме управлении (динамический режим управления) одинаковые сегменты разрядов индикатора объединены в группы. Отображение информации происходит за счет поочередного зажигания сегментов разрядов индикатора, с частотой, не воспринимаемой человеческим глазом.

Мультиплексное управление позволяет управлять большим количеством сегментов. Вместо раздельного управления каждым элементом, они могу адресоваться по строкам и столбцам (COM и SEG), таким образом, упрощается управляющая схема, т.к. каждому сегменту не требуется собственная управляющая линия. Для включения выбранного сегмента, на него надо подать разность потенциалов COM и SEG. Пример работы первого разряда индикатора (на индикатор выводится «1:»):


Первый разряд индикатора в момент времени t 0


Первый разряд индикатора в момент времени t 1


Первый разряд индикатора в момент времени t 2


Общая схема подключения сегментов к выводам ЖКИ


Схема подключения выводов ЖКИ к портам микроконтроллера

Для линий SEG используется управляющее напряжение, количество уровней которого определяется коэффициентом bias. ЖКИ на отладочной плате использует мультиплексный режим управления с duty=1/4 и bias=1/3. Значение duty и bias устанавливаются через регистр LCD_CR (Control Register) в битах DUTY и BIAS.

Практика

Конфигурирование портов микроконтроллера

Для управления ЖКИ порты микроконтроллера должны быть настроены соответствующим образом:
  1. На выход
  2. Использование альтернативной функции AF 11 (Alternate function)
  3. Иметь частоты вывода в порт 400 кГц
  4. Использовать режим работы push-pull
  5. Без подтягивающих резисторов
При работе порта в режиме альтернативной функции, выходной буфер данных порта управляется сигналами, поступающими с периферии. Заголовочный файл stm32lxx.h библиотеки CMSIS содержит описание всех регистров периферии, а также структуры доступа к ним.

Выводы ЖКИ подключены к портам GPIOA (PA1-PA3,PA8-PA10,PA15), GPIOB (PB3-PB5, PB8-PB15), GPIOC (PC0-PC3,PC6-PC11) микроконтроллера. Для работы ЖКИ, на выбранные порты необходимо подать тактовый сигнал. Тактирование портов GPIO микроконтроллера происходит от шины AHB системы RCC (Reset and Clock Control) – системы тактировании и сброса. Подача тактового сигнала осуществляется установкой соответствующих битов в регистре RCC_AHBENR (AHB peripheral clock enable register).

Регистр RCC_AHBENR (на рисунке приведены первые 15 разрядов)

Для портов GPIOA, GPIOB, GPIOC необходимо установить 1 в 0, 1, 2 разряды регистра.

Далее я буду приводить код записи информации в регистр с использованием битмаски и с использованием шестнадцатеричных кодов. Использование битмасок удобнее, но работа с шестнадцатеричными кодами позволяет понять суть работы с регистрами.

RCC->AHBENR |=(RCC_AHBENR_GPIOAEN|RCC_AHBENR_GPIOBEN|RCC_AHBENR_GPIOCEN); или RCC->AHBENR = 0x7; /* 0x7=111 */

Для указания режимов работы порта используется регистр GPIOx_MODER (GPIO port mode register) (x = A..H). Все разряды регистра сгруппированы в группы MODERy, где y номер пина соответствующего порта. Порты необходимо настроить на режим альтернативной функции, т.е. в группе, отвечающей за пин, установить значение 10. Для порта GPIOA нужно настроить пины 1-3,8-10,15, т.е установить 1 в 3,5,7,17,19,21,31 разряды.


Регистр GPIOx_MODER (GPIO port mode register)

GPIOA->MODER |= (GPIO_MODER_MODER1_1 | GPIO_MODER_MODER2_1 | GPIO_MODER_MODER3_1 | GPIO_MODER_MODER8_1 | GPIO_MODER_MODER9_1 | GPIO_MODER_MODER10_1 | GPIO_MODER_MODER15_1); или GPIOA->MODER = 0x802A00A8; /* 0x802A00A8=1000 0000 0010 1010 0000 0000 1010 1000 */
Порты микроконтроллера необходимо перевести в режим push-pull. Для этого необходимо в регистре GPIOx_OTYPER (GPIO port output type register) установить 1 в разряды, отвечающие за пины.


Регистр GPIOx_OTYPER (GPIO port output type register)

GPIOA->OTYPER &= ~(GPIO_OTYPER_OT_1 | GPIO_OTYPER_OT_2 | GPIO_OTYPER_OT_3 | GPIO_OTYPER_OT_8 | GPIO_OTYPER_OT_9 | GPIO_OTYPER_OT_10 | GPIO_OTYPER_OT_15); или GPIOA->OTYPER &= ~0x0000870E; /* 0x870E=1000 0111 0000 1110 */
Оба варианта воздействуют на выбранные пины. (Для порта GPIOA настраиваются пины 1-3,8-10,15). Если необходимо перевести все пины порта в режим push-pull, можно записать в регистр значение:
GPIOA->OTYPER = 0x0;
Для указания частоты вывода информации в порт используется регистр GPIOx_OSPEEDR (GPIO port output speed register). Все разряды регистра сгруппированы в группы OSPEEDRy, где y номер пина соответствующего порта. В данной работе должна быть установлена частота 400 кГц т.е. в группе, отвечающей за пин, установить значение 00.


Регистр GPIOx_OSPEEDR (GPIO port output speed register)

GPIOA->OSPEEDR &= ~(GPIO_OSPEEDER_OSPEEDR1 | GPIO_OSPEEDER_OSPEEDR2 | GPIO_OSPEEDER_OSPEEDR3 | GPIO_OSPEEDER_OSPEEDR8 | GPIO_OSPEEDER_OSPEEDR9 | GPIO_OSPEEDER_OSPEEDR10 | GPIO_OSPEEDER_OSPEEDR15); или GPIOA->OSPEEDR &= ~0xC03F00FC; /*0xC03F00FC=1100 0000 0011 1111 0000 0000 1111 1100 */
Если необходимо установить частоту вывода в порт 400 кГц для всех пинов, можно записать в регистр значение:
GPIOA->OSPEEDR = 0x0;
Для отключения подтягивающих резисторов pull-up, pull-down для выбранных пинов используется регистр GPIOx_PUPDR (GPIO port pullup/ pull-down register). Все разряды регистра сгруппированы в группы PUPDRy, где y – номер пина соответствующего порта. Для отключение подтягивающих резисторов в группе, отвечающей за пин, устанавливается значение 00.


Регистр GPIOx_PUPDR (GPIO port pull-up/pull-down register)

GPIOA->PUPDR &= ~(GPIO_PUPDR_PUPDR1 | GPIO_PUPDR_PUPDR2 | GPIO_PUPDR_PUPDR3 | GPIO_PUPDR_PUPDR8 | GPIO_PUPDR_PUPDR9 | GPIO_PUPDR_PUPDR10 | GPIO_PUPDR_PUPDR15); или GPIOA->PUPDR &= ~0xC03F00FC; /*0xC03F00FC=1100 0000 0011 1111 0000 0000 1111 1100 */
Если необходимо отключить подтягивающие резисторы для всех пинов, можно записать в регистр значение:
GPIOA->PUPDR = 0x0;
Для использования альтернативной функции для портов микроконтроллера используются два регистра GPIOx_AFRL (GPIO alternate function low register), отвечающий за младшие пины (с 0 по 7) и GPIOx_AFRH (GPIO alternate function high register), отвечающий за старшие пины (с 8 по 15). Все разряды регистров сгруппированы в группы AFRLy и AFRHy, где y – номер пина соответствующего порта. Порты должны быть настроены на использование альтернативной функции AF11, для этого в группе, отвечающей за пин, должно быть установлено значение 1011.


Регистр GPIOx_AFRL (GPIO alternate function low register)


Регистр GPIOx_AFRH (GPIO alternate function high register)

Для этого необходимо записать в регистры значения:
GPIOA->AFR = 0xBBB0; /* 0xBBB0 = 1011 1011 1011 0000*/ GPIOA->AFR = 0xB0000BBB; /* 0xB0000BBB=1011 0000 0000 0000 0000 1011 1011 1011*/

AFR = 0xBBB0 – записывает значение в регистр GPIOx_AFRL.
AFR = 0xB0000BBB – записывает значение в регистр GPIOx_AFRH.

Настройки соответствующих пинов портов GPIOB, GPIOC производятся аналогично.

Настройка контроллера ЖКИ

При работе с контроллером ЖКИ, как и с другой периферией, на него необходимо подать тактовый сигнал. Тактовый сигнал также подается на систему управления питанием. Контроллер и система управления питанием для тактирования используют шину APB1. Для разрешения тактирования в регистре RCC_APB1ENR (APB1 peripheral clock enable register) необходимо установить 1 в 9 и 28 разрядах.


Регистр RCC_APB1ENR (APB1 peripheral clock enable register)

RCC->APB1ENR |= RCC_APB1ENR_PWREN|RCC_APB1ENR_LCDEN; или RCC->APB1ENR |= 0x10000200; /* 0x10000200=1 0000 0000 0000 0000 0010 0000 0000 */
Для работы контроллера ЖКИ необходимо указать источник тактовых сигналов. Источник указывается в регистре RCC_CSR. По умолчанию запись в этот регистр запрещена. В регистре управления питанием PWR_CR (PWR power control register) снимается защита от записи в регистр RCC_CSR. Регистр RCC_CSR управляет источниками тактирования часов RTC и контроллера ЖКИ
Запись в регистр RCC_CSR разрешается установкой 1 в 8 разряд регистра PWR_CR.


Регистр PWR_CR (PWR power control register)

PWR->CR |= PWR_CR_DBP; или PWR->CR |= 0x100; /* 0x100 =1 0000 0000 */
Для смены источника тактирования контроллера ЖКИ (и часов RTC тоже) необходимо сначала выполнить сброс источника тактирования установкой бита RTCRST (установкой 1 в 23 разряд) в регистре RCC_CSR (Control/status register).


Регистр RCC_CSR (Control/status register)

RCC->CSR |= RCC_CSR_RTCRST;
Или записав в регистр значение, используя оператор «|=», т.к. значение по
умолчанию регистра отлично от 0x0:
RCC->CSR |= 0x800000; /* 0x800000 = 1000 0000 0000 0000 0000 0000 */
Для выбора нового источника тактирования необходимо убрать бит RTCRST:
RCC->CSR &= ~RCC_CSR_RTCRST; или RCC->CSR &= ~0x800000;
В качестве источника тактового сигнала выбирается внешний НЧ генератор. Для включения генератора в регистре RCC_CSR необходимо установить бит LSEON (установить 1 в 8 разряд):
RCC->CSR |= RCC_CSR_LSEON; или RCC->CSR |= 0x100; /* 0x100 = 1 0000 0000 */
После включения генератора необходимо некоторое время на его стабилизацию. Готовность генератора проверяется аппаратной установкой бита LSERDY в регистре RCC_CSR:
while(!(RCC->CSR&RCC_CSR_LSERDY));
Выбор внешнего НЧ генератора в качестве источника тактового сигнала осуществляется установкой в группе RTCSEL регистра RCC_CSR значения 01:
RCC->CSR |= RCC_CSR_RTCSEL_LSE; или RCC->CSR |= 0x10000; /* 0x10000 = 01 0000 0000 0000 0000 */
В контроллере ЖКИ необходимо установить нужный режим bias. Для этого в регистре LCD_CR (LCD control register) необходимо установить значение 10 в группу BIAS. Перед установкой бит необходимо очистить биты от «мусора».


Регистр LCD_CR (LCD control register)

Сброс битов:
LCD->CR &= ~LCD_CR_BIAS; или LCD->CR &= ~0x60;
Выбор режима bias=1/3 с использованием битмаски:
LCD->CR |= LCD_CR_BIAS_1; или LCD->CR |= 0x40;
Устанавливаем режим duty=1/4. Для этого также вначале сбрасываем все биты:
LCD->CR &=~LCD_CR_DUTY; или LCD->CR &= ~0x1C;
Устанавливаем значение 011 в группу DUTY регистра LCD_CR для
режима duty=1/4:
LCD->CR |= LCD_CR_DUTY_0|LCD_CR_DUTY_1; или LCD->CR |= 0xС;
Активируем функцию переназначения выводов. Для этого устанавливаем 1 в 7 разряд регистра LCD_CR:
LCD->CR |= LCD_CR_MUX_SEG; или LCD->CR |= 0x80;
Устанавливаем значения коэффициентов деления частоты тактового сигнала LCDCLK. Значения коэффициентов выставляются в регистре LCD_FCR (LCD frame control register). Вначале также очищаем все биты, затем устанавливаем нужные.


Регистр LCD_FCR (LCD frame control register)

LCD->FCR &= ~LCD_FCR_PS; LCD->FCR &= ~LCD_FCR_DIV; или LCD->FCR &= ~0x3C00000; LCD->FCR &= ~0x3C0000;
Значения коэффициентов деления частоты тактового сигнала устанавливаем равными ck_ps = LCDCLK/16, ck_div = ck_ps/17. Для этого устанавливаем 1 в 24 и в 18 разряды:
LCD->FCR |= 0x1040000; /*0x1040000 = 1 0000 0100 0000 0000 0000 0000*/
Для установки нужного уровня контраста необходимо установить значение 010 в группу СС, так же предварительно очистив биты от старых значений:
LCD->FCR &= ~LCD_FCR_CC; LCD->FCR |= LCD_FCR_CC_1; или LCD->FCR &= ~0x1C00; LCD->FCR |= 0x800; /*0x800 = 1000 0000 0000*/
После установки всех значений необходимо некоторое время на синхронизацию регистра LCD_FCR. Синхронизация регистра проверяется аппаратной установкой бита FCRSF в регистре LCD_SR (LCD status register).

Регистр LCD_SR (LCD status register)

While(!(LCD->SR&LCD_SR_FCRSR));
В качестве источника напряжения для ЖКИ выбираем внутренний step-up converter для формирования V lcd . Для этого в первый разряд регистра LCD_CR (LCD control register) устанавливается значение 0:
LCD->CR &= ~LCD_CR_VSEL; или LCD->CR &= ~0x2;
Разрешение работы ЖКИ контроллера происходит установкой 1 в 0 разряд регистра LCD_CR (LCD control register):
LCD->CR |= LCD_CR_LCDEN; или LCD->CR |= 0x1;
После установки в качестве источника напряжения внутреннего step-up converter, необходимо дождаться его готовности. Готовность проверяется аппаратной установкой бита RDY в регистре LCD_SR (LCD status register):
while(!(LCD->SR&LCD_SR_RDY));
После разрешения работы контроллера ЖКИ, необходимо дождаться его готовности. Готовность проверяется аппаратной установкой бита ENS в регистре LCD_SR (LCD status register):
while(!(LCD->SR&LCD_SR_ENS));

Формирование изображения на ЖКИ

Все сегменты индикатора объединены в группы COM0 - COM3 по 24 сегмента в каждой (SEG0-SEG23). Информация о сегментах хранится в регистрах LCD_RAM памяти контроллера ЖКИ. Разводка печатной платы такова, что номера сегментов не соответствуют номерам разрядов регистров LCD_RAM.

Что бы отобразить 1 в первом разряде ЖКИ, необходимо зажечь сегменты 1B,1C. Сегмент 1B принадлежит группе COM0, сегмент 1C принадлежит группе COM1. Следовательно информация о них должна быть записана в регистры RAM (LCD_RAM0), RAM (LCD_RAM2) соответственно. За сегмент 1B отвечает вывод ЖКИ LCDSEG22, информация о котором храниться в разряде SEG40 регистра RAM (LCD_RAM1). С использованием функции переназначения за сегмент LCDSEG22 будет отвечать разряд SEG28 регистра RAM (LCD_RAM0). За сегмент 1С отвечает вывод ЖКИ LCDSEG1, информация о котором храниться в разряде SEG1 регистра RAM (LCD_RAM2).

LCD->RAM= 0x10000000; /*0x10000000 = 1 0000 0000 0000 0000 0000 0000 0000 */ LCD->RAM = 0x2; /*0x2= 10 */
До записи значений в регистры памяти необходимо проверить завершена ли предыдущая передача данных на ЖКИ. Для этого проверяется бит UDR (Update display request) регистра LCD_SR (LCD status register). Контроллер ЖКИ имеет два выходных буфера, информация заносится в первый буфер, а выводится на ЖКИ из второго буфера. Бит UDR устанавливается во время передачи из первого буфера во второй, защищая от записи регистры LCD_RAM:
while(LCD->SR & LCD_SR_UDR);
После записи информации в регистры LCD_RAM необходимо установить бит UDR в регистре LCD_SR (LCD status register)(установить 1 во 2 разряд):
LCD->SR |= LCD_SR_UDR; или LCD->SR |= 0x4; /*0x4 = 100 */

По просьбе трудящихся, да и моим обещаниям решил я описать работу с знаковым ЖК 16х2 в среде CodeVisionAVR. Начнем с описания самого ЖК. Алфовитно-цифровой ЖК дисплей со встроенным чипом HD44780 фирмы Hitachi может выводить символы в одну, две или четыре сроки по 8, 16, 20 или 40 символов в каждой. В данной статье я буду рассматривать ЖК 16х2 (16 символов, 2 строки) . Данный дисплей для физического подключения к МК имеет 16 выводов (расположение выводов зависит от фирмы изготовителя) . Давайте посмотрим на эти выводы. Не мудрствуя лукаво я спер табличку в МЭЛТе. В принципе она подходит для любого ЖК.
Ну я думаю что объяснять не нужно для чего нужен тот или иной пин. Там все написано по русски. Но есть несколько небольших но. 1) ЖК дисплеи могут быть выпущены в двух вариантах на 5 вольт, либо на 3,3. 2) В цепи питания не всегда установлен токоограничивающий резистор. Смотрите внимательно, может стоять просто перемычка. (Я так спалил подсветку на двух дисплеях.) 3) Схема включения резистора для регулировки контрастности.
Так, ну теперь как сие чудо подключить к МК. Работать будем с ATmega8 и кварцем на 4 МГц. Вот собственно и схема.
Как видите ничего сложного нет. Первые три разряда порта D служат для управления, а последние четыре для данных. Также можно работать с этими дисплеями по 8-и битной шине, но я думаю отдавать лишние 4 ноги это расточительство. Поэтому будем работать по 4-х битной шине. Со схемой разобрались, теперь давайте с программной частью. Для инициализации дисплея и перевод его в 4-х битный режим нужно выполнить несколько команд. Но перед этим я хочу разъяснить как работают управляющие биты. Бит RS отвечает за то что будет принимать ЖК. Если RS = 0 , то мы передаем команду, а если 1 то данные. Если бит RW = 0 , то мы записываем в ЖК, а если 1 , то читаем. Бит Е просто строб. То есть как только мы захотим ввести команду или данные, то после того как выставили все биты на ножках просто выставляем в 1 бит Е , а потом опять роняем в 0 . 1 - Включить питание 2 - Выдержать паузу не менее 20 мс 3 - Команда для 4-х бит. шины 4 - Выдержать паузу не менее 40 мкс 5 - Команда для 4-х бит. шины (RS=0), (RW=0), (D7=0), (D6=0), (D5=1),(D4=1) 6 - Выдержать паузу не менее 40 мкс 7 - Команда для 4-х бит. шины (RS=0), (RW=0), (D7=0), (D6=0), (D5=1),(D4=1) 8 - Выдержать паузу не менее 40 мкс 9 - Команда для 4-х бит. шины (RS=0), (RW=0), (D7=0), (D6=0), (D5=1),(D4=0) 10 - Выдержать паузу не менее 40 мкс 11 - Выставить параметры (RS=0), (RW=0), (D7=0), (D6=0), (D5=1),(D4=0) (RS=0), (RW=0), (D7=1), (D6=0), (D5=0),(D4=0) 12 - Выключаем дисплей (RS=0), (RW=0), (D7=0), (D6=0), (D5=0),(D4=0) (RS=0), (RW=0), (D7=0), (D6=0), (D5=1),(D4=0) 13 - Очищаем экран (RS=0), (RW=0), (D7=0), (D6=0), (D5=0),(D4=0) (RS=0), (RW=0), (D7=0), (D6=0), (D5=0),(D4=1) 14 - Режим ввода данных (RS=0), (RW=0), (D7=0), (D6=0), (D5=0),(D4=0) (RS=0), (RW=0), (D7=0), (D6=1), (D5=1),(D4=0) О как. Теперь после этой абракадабры наш дисплей готов принимать данные. Что дальше. А дальше давайте ка рассмотрим команды ЖК. Для передачи команд/данных в ЖК по 4-х битной шине требуется два захода. Первым передаем старшие 4 байта, а вторым передаем младшие 4 байта. Дальше все команды я буду писать парами. Команда очистки индикатора и постановка курсора в левый верхний угол. RS=0, RW=0, D4=0, D5=0, D6=0, D7=0 (E=1 потом 0) RS=0, RW=0, D4=0, D5=0, D6=0, D7=1 (E=1 потом 0) Команда перемещения курсора в левую позицию. (Х-значит пофик какое значение) RS=0, RW=0, D4=0, D5=0, D6=0, D7=0 (E=1 потом 0) RS=0, RW=0, D4=0, D5=0, D6=1, D7=Х (E=1 потом 0) Команда устанавливает направление сдвига курсора(ID=0/1 влево/вправо). Так же разрешение сдвига дисплея (SH=1) при записи в DDRAM. RS=0, RW=0, D4=0, D5=0, D6=0, D7=0 (E=1 потом 0) RS=0, RW=0, D4=0, D5=1, D6=ID, D7=SH (E=1 потом 0) Команда включения дисплея (D=1) и выбора курсора (A, B). A=0, B=0 Курсора нет, ничего не мигает A=0, B=1 Курсора нет, мигает весь символ A=1, B=0 Курсор в виде подчеркивания, не мигает A=1, B=1 Курсор в виде подчеркивания и мигает RS=0, RW=0, D4=0, D5=0, D6=0, D7=0 (E=1 потом 0) RS=0, RW=0, D4=1, D5=D, D6=A, D7=B (E=1 потом 0) Команда сдвига дисплея/курсора(SC=0/1 курсор/дисплей RL=0/1 влево/вправо). RS=0, RW=0, D4=0, D5=0, D6=0, D7=1 (E=1 потом 0) RS=0, RW=0, D4=SC, D5=RL, D6=X, D7=X (E=1 потом 0) Команда установки разрядности шины(DL=0/1 4/8 бит) А так же страници знакогенератора Р. RS=0, RW=0, D4=0, D5=0, D6=1, D7=DL (E=1 потом 0) RS=0, RW=0, D4=1, D5=0, D6=Р, D7=0 (E=1 потом 0) Команда установки адреса следующей операции с установкой туда курсора и выбора области CGRAM(Свои придуманные символы). RS=0, RW=0, D4=0, D5=1, D6=ACG, D7=ACG (E=1 потом 0) RS=0, RW=0, D4=ACG, D5=ACG, D6=ACG, D7=ACG (E=1 потом 0) Команда установки адреса последующей операции и выбор области памяти DDRAM (Знакогенератор). RS=0, RW=0, D4=0, D5=1, D6=ADD, D7=ADD (E=1 потом 0) RS=0, RW=0, D4=ADD, D5=ADD, D6=ADD, D7=ADD (E=1 потом 0) Команда Записи данных в текущую область. RS=1, RW=0, D4=DATA, D5=DATA, D6=DATA, D7=DATA (E=1 потом 0) RS=1, RW=0, D4=DATA, D5=DATA, D6=DATA, D7=DATA (E=1 потом 0) Команда Чтения данных в текущую область. RS=1, RW=1, D4=DATA, D5=DATA, D6=DATA, D7=DATA (E=1 потом 0) RS=1, RW=1, D4=DATA, D5=DATA, D6=DATA, D7=DATA (E=1 потом 0) Вот собственно и все команды. Есть еще команда чтения флага занятости, но я ей не пользуюсь, а просто выдерживаю между каждой командой не менее 40 мкс. Вот и все. А теперь после прочтения этого трактата, выпейте чашку чая или кофе и забудьте про все это. Так как всю эту муру на себя берут функции из библиотеки CodeVisionAVR. Создаем новый проект как это было уже рассказано. Для тех кто не в курсе идем сюда , остальные заходят в код-генераторе на вкладку LCD и выбирают PORTD . Что мы этим сделали. Первое мы сказали программе что хотим работать с ЖК дисплеем (выбрав вкладку LCD ). Потом мы сказали что подключим его к порту D . Ниже выпадающий список дает возможность выбрать количество символов в строке. Так как по умолчанию стоит 16 , а мы хотим работать с ЖК 16х2, то ничего менять не надо. Ниже для подсказки расписаны ножки порта для правильного подключения ЖК к МК. Все, сохраняем проект и смотрим на свеже-сгенерированный код. Первое на что надо обратить внимание - это на кусок кода после директивы препроцессора #include Вот на этот: // Alphanumeric LCD Module functions #asm .equ __lcd_port=0x12 ;PORTD #endasm #include > Давайте его разберем построчно. Первая строка комментарий в котором говорится о том что мы подключили заголовочный файл с функциями для работы со знаковым ЖК. Второй строкой мы открываем блок для ввода ассемблерных команд. Следующая строка присваивает порт к которому подключен ЖК. Команда .equ в ассемблере делает тоже самое что команда #include в C. Если вы случайно в генераторе кода выбрали не тот порт, то его можно всегда поменять в этой строке. Номер порта всегда можно узнать в файле инициализации МК. Он всегда подключается в самой первой строке. В нашем случае это mega8.h . Следующая строка закрывает блок ассемблерного кода. И последняя строка как раз и подключает все необходимое для работы с ЖК. Теперь давайте пробежимся по основным функциям. Первая функция которую необходимо вызвать до того как вы начали мучать ЖК - это конечно же функция инициализации дисплея. Выглядит она так: void lcd_init(unsigned char lcd_columns) Данная функция инициализирует дисплей, а передаваемым параметром должно быть количества символов в строке. Мотаем нашу программу в самый низ и перед основным циклом видим две строки следующего содержания: // LCD module initialization lcd_init(16); Вот те самые 16 строк которые были выбраны в списке код-генератора программа и запихнула аргументом в функцию. Здесь также если вы с перепугу забыли что у вас ЖК 8 или 20 символов на строку, то просто поменяйте значение аргумента в этой функции. void lcd_gotoxy(unsigned char x, unsigned char y) Эта функция, судя из ее названия, переводит курсор в позицию x, y . Здесь x - это буковка. Слева направо от 0 до 15/19/39 (зависит от количества букв в строке) . А y - это строка. Сверху вниз от 0 до 0/1/3 (зависит от количества строк) . void lcd_putchar(char c) Эта функция выводит один символ в текущую позицию. Пример: lcd_putchar("A") или lcd_putchar(0x41) что на выходе даст один и тот же результат. То есть параметр может быть как символ, так и его код. lcd_gotoxy(0,0); lcd_putchar("A"); lcd_gotoxy(0,1); lcd_putchar(0x41); Я думаю комментарии здесь излишне, давайте посмотрим на результат.
Следующая функция. void lcd_puts(char *str) Эта функция выводит строку расположенную в SRAM начиная с текущей позиции. Пример: lcd_gotoxy(0,0); lcd_puts("СТРОКА"); Видим:
Следующая функция. void lcd_putsf(char *str) Эта функция выводит строку расположенную во FLASH начиная с текущей позиции. Пример: lcd_gotoxy(0,0); lcd_putsf("СТРОКА"); Видим:
Ну и замыкает все это безобразие функция "Ластик" void lcd_clesr(void) Вызвав данную функцию вы сотрете все что есть на дисплее, а курсор встанет в крайнее левое положение верхней строки. Вот так для начала можно выводить слова и цифры на ЖК дисплей при помощи готовых функций. Теперь давайте поговорим о том как выводить значение переменных. Для этих целей нам понадобится еще одна библиотека. Ну те кто программировал на С под ПК про нее должны знать. Называется она stdio.h Поднимаемся на самый верх программы и после директивы препроцессора #include добовляем #include В итоге наш код примет вид. // Alphanumeric LCD Module functions #asm .equ __lcd_port=0x12 ;PORTD #endasm #include #include Теперь давайте познакомимся с функцией, которая занимается форматированием текста. void printf(char flash *fmtstr [,arg1, arg2, ...]) Как она работает. В char flash *fmtstr задается формат выводимого значения, а в аргументы arg1, arg2, ... имя переменной. Пример. unsigned char temp = 123; printf("temp = %05d\n", temp); Что означает эта абра-кадабра. Первая строка создает переменную и присваевает ей значение. Тут все понятно, а вот что делает вторая. Все по порядку. Сначала выводится запись temp = , затем 00123 . Почему выводится 00123 . А потому что у нас есть условие %05d\n которое говорит: 1) % - будем форматировать значения первого аргумента 2) 0 - будем выводить n знаков, пустые забьем нулями 3) 5 - выводим 5 знаков, если число меньше 5 знаков, то заполнить пустышки нулями. Об этом говорит пункт 2. Число будет выровнено по правому краю. 4) d - выводим число в десятичном формате. 5) \n - Заставит после вывода символа перейти на другую строку. Следующая функция. void sprintf(char flash, char flash *fmtstr [,arg1, arg2, ...]) Вот эта функция нам наиболее интересна. Она форматирует строку и записывает ее в массив. После мы можем смело массив вывести на экран. Как она работает. unsigned char temp = 123; unsigned char string; sprintf(string, "temp = %05d\n", temp); lcd_puts(string); Вот как это выглядит в живую.
Вот мы и научились выводить форматированный текст на ЖК. Далее кратко пробегусь по типам преобразования. i d - Для вывода десятичной целой со знаком u - Для вывода десятичной целой без знака e -d.d e-d E - Для вывода вещественного с плавающей точкой вида -d.d E-d f - Для вывода вещественного с плавающей точкой вида -d.d x - Для вывода в шеснадцатеричном виде маленькими буквами X - Для вывода в шеснадцатеричном виде большими буквами c - Для вывода в символа Если написать %-05d то знак "-" заставит выравнивать по левому краю, а пустышки нулями забиваться не будут. Если вы попытаетесь напечатать число с плавающей точкой, то сильно удивитесь. Число не напечатается. Во засада)) Проблема кроется в настройках компилятора. Для того чтобы компилятор начал понимать формат float нужно его немного настроить. Для этого заходим Project->Configure и заходим во вкладку C Compiler . В своистве (s)printf Features: выбираем float, width, precision . Вот и все. Пробуйте, экспериментируйте. Возникнут вопросы, пишите на форуме. Удачи!